Из условия задачи СО=АО=ДО=ВО как радиуси круга и угли /_СОВ=/_АОД как вертикальние
По признакам подобия △, за двумя сторонами и углом между ними треугольник СОВ и АОД подобни и равни, так кск сторони равни. Поетому в треугольниках СОВ и АОД равни соответствующие угли. /_ОАД=/_ОВС, с другой сторони ети угли являются внутренними разносторонними углами прямих СВ, АД и секущей АВ. Так как ети угли равни, то по признаку паралельности СВ||АД.
Равенство углов /_ОАД=/_ОВС можно доказать также и другим : така как треугольники АОД и СОВ равнобедренние, по условию, то угли при основании одинаковие. Так как /_ АОД=/_СОВ, то все угли при основании треугольников - равни.
Нехай дано ΔАВС, де АВ=8см; ВС=9см; АС=13см. Проведемо медіану ВК ( АК=АС за властивістю медіани). Добудуємо данний трикутник до паралелограма. Для цього продовжимо Медіану ВК на таку саму довжину. Отримаємо відрізок ВД ВК=КД за побудовою АК=АС за властивістю медіани, отже отримана фігура АВСД ( треба з'єднати усі кінці) є паралелограмом, де АС і ВД-діагоналі паралелограма. За властивістю паралелограма: АС^2 + ВД^2=2*(АВ^2 + ВС^2) 13^2 + ВД^2=2*(8^2 + 9^2) 169 + ВД^2=2*(64+81) 169 + ВД^2=2*145 ВД^2=290-169 ВД^2=121 ВД=11см ВК=КД=5,5см Відповідь: 5,5 см.
Відповідь:
Пояснення:
Рассмотрим два треугольника СОВ и АОД
Из условия задачи СО=АО=ДО=ВО как радиуси круга и угли /_СОВ=/_АОД как вертикальние
По признакам подобия △, за двумя сторонами и углом между ними треугольник СОВ и АОД подобни и равни, так кск сторони равни. Поетому в треугольниках СОВ и АОД равни соответствующие угли. /_ОАД=/_ОВС, с другой сторони ети угли являются внутренними разносторонними углами прямих СВ, АД и секущей АВ. Так как ети угли равни, то по признаку паралельности СВ||АД.
Равенство углов /_ОАД=/_ОВС можно доказать также и другим : така как треугольники АОД и СОВ равнобедренние, по условию, то угли при основании одинаковие. Так как /_ АОД=/_СОВ, то все угли при основании треугольников - равни.