ответ:2
Объяснение:
В правильной пирамиде ее вершина проецируется в центр основания. Основание - правильный треугольник, центром которого является пересечение высот, медиан и биссектрис. По свойству медиан, они делятся точкой пересечения в отношении 2:1, считая от вершины треугольника. По формуле высоты (медианы, биссектрисы) правильного треугольника: h = (√3/2)*a, где а - сторона треугольника. Тогда h=(3/2)*6 = 3√3, а отрезок высоты АО = (2/3)*h = 2√3. По Пифагору высота пирамиды DO=√(AD²-AO²) = √(16-12) = √4 = 2. ответ: высота пирамиды равна 2 ед.
Дано: Треугольник со сторонами 6, 9 и 13 см.
Найти: стороны треугольника,образованные его средними линиями
Предположим,что у нас есть треугольник ABC, у которого сторона AB равна 6 см.,BC 9 см., и AC 13 см. На средине стороны AB поставим точку D, на средине BC - точку E, и на средине AC - точку F. Соединив эти точки, мы получим треугольник DEF, образованный срединными линиями треугольника ABC. Согласно теореме о средней линии треугольника, средняя линия треугольника параллельна третьей стороне и равна ее половине. Тогда DE =1/2 AC = 13/2 = 6,5 см, EF=1/2AB=6/2=3, DF=1/2BC=9/2=4,5
ответ: 6,5 см, 3 см, 4,5 см.