Рисунок к задаче простой, сделать его сумеет каждый. Пусть этот прямоугольник АВСД, ВД - диагональ. АВ=а АД - длинная сторона прямоугольника Перпендикуляры из А и С делят диагональ на части ВК и КД. Пусть ВК равна х, тогда КД=2х, а ВД=3х Треугольник АВД прямоугольный. АК в нем - высота. АВ и АД - катеты Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и отрезком гипотенузы, заключенным между катетом и высотой. АВ=а а²=ВК*ВД а²=х*3х 3х²=а² АД²=КД*ВД=2х*3х АД²=2*3х² 3х²=а² ( см. выше) АД²=2а² АД=а√2
Обозначим каждую часть диагонали х Вся диагональ 3х Имеем равнобедренный треугольник у которого основание равно 2х. Боковые стороны а. высота такого треугольника равна √а²-х² Площадь треугольника, образованного диагональю и двумя сторонами прямоугольника равна 1/2 ·3х ·√а²-х²
С драгой стороны вторая сторона прямоугольника по теореме Пифагора равна√(3х)²-а² Площадь треугольника образованного диагональю и двум сторонами равна половине произведения сторон
1/2 · а ·√9х²-а²
ПРиравняем и решим уравнение 9х^4=a^4 3x²=a² x=a√3/3 диагональ равна а·√3 вторая сторона по теореме ПИфагора а√2
30 градусов, 3 см
Объяснение:
Величина второго угла равно 90-60=30( по первому свойству прямоугольного треугольника)
Против угла 30 градусов лежит меньший катет, чем против угла 60 градусов, следовательно, нам нужно искать его сумму с гипотенузой.
Против угла 30 градусов лежит катет, равный половине гипотенузы.
Пусть х-катет
тогда 2х-гипотенуза
х+2х=9
х=3