В прямоугольном треугольнике ABC, изображенном на рисунке, угол A в два раза меньше угла B, а гипотенуза AB равна 18. Найди катет BC. 1. Углы A и B - острые угло прямоугольного треугольника ABC, поэтому угол A + угол B = 2. По условию угол B = 2 * угол A, поэтому угол A + 2 * угол A = , откуда угол A = 3. Так как в прямоугольном треугольнике ABC угол A = , то катет BC, лежащий против этого угла, равен п гипотенузы AB, т.е BC = см ответ: BC = см
Вот такое нахальное решение. ну уж простите : )пусть катеты a и b, гипотенуза с. я строю квадрат со сторонами (a + b), и дальше обхожу все 4 стороны по часовой стрелке, откладывая отрезок а от вершины. (пояснение.построенный со стороной (a + b) с вершинами аbcd, а - "левая нижняя" вершина. от а вверх - вдоль ав, откладывается а, потом от в вправо - вдоль вс откладывается а, потом от с вниз, вдоль cd, откладывается а, и от d вдоль da откладывается а.)все эти точки соединяются.получился квадрат со стороной с, вписанный в квадрат со стороной (a+b).ясно, что центры этих квадратов . это автоматически доказывает то, что надо в . (если не ясно, постройте там пару треугольников из диагоналей обоих квадратов и отрезков длины а и докажите их равенство. на самом деле не надо ничего доказывать - эта фигура из двух квадратов переходит сама в себя при повороте вокруг центра большого квадрата на 90 градусов. поэтому центр "вписанного" квадрата совпадает с центром большого, то есть лежит на биссктрисе прямого угла большого квадрата. ну, и биссектрисе прямого угла исходного треугольника, само собой - это одно и то же. этих треугольников там даже четыре, а не один : ), можно любой выбрать за исходный.)
Около треугольника можно описать окружность, притом только одну. Центр описанной окружности треугольника лежит в точке пересечения серединных перпендикуляров к его сторонам. В правильном треугольнике высота является также медианой и биссектрисой. Центр описанной окружности правильного трегольника лежит в точке пересечения высот/медиан/биссектрис. Высоты/медианы/биссектрисы правильного треугольника равны a·√3/2 Медианы треугольника пересекаются в одной точке и делятся этой точкой в отношении 2:1, считая от вершины. Расстояние от вершины до точки пересечения медиан правильного треугольника - радиус описанной окружности (R). R= h·2/3 R= a·√3/2·2/3 = a·√3/3
Площадь круга (S) равна пR^2. S= п(a·√3/3)^2 <=> S= (п·a^2)/3 <=> a= √(3·S/п)