М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Liza14102004
Liza14102004
22.07.2021 01:33 •  Геометрия

Косинусом гострого кута називають
2. Синусом називають
3. Тангенсом називаюсть
4. Котангенсом називають
5. Від чого залежать синус і тангенс кута трикутника ?
6. Від чого залежить косинус і котангенс кута трикутника ?
7. Який за величеною може бути синус і косинус кута ?
8. Який за величеною може бути бути тангенс і котангенс ?
9. Як пов'язані між собой
1) sin A , cos A , tg A
2) san A , cos A
3) tg A , ctg A ?
10. Як пов'язані між собой
1) sin A , cos A , ctg A
2) tg A , ctg A
3) cos A , sin A
11. Чи може sin A = 1,11 , tg A = 7,1 ?
12. Чи може cos A = 1,07 , ctg A =9,3 ?
13. Чому дорівнює ?
sin45* . tg45*. tg60*
cos30*. tg30*. cos45*
sin60*. cos60*. sin30*

👇
Открыть все ответы
Ответ:
vstef
vstef
22.07.2021
2. Правильный многоугольник можно вписать в окружность. Тогда эта  окружность делится его вершинами на n частей, а круг, описанный данной окружностью, на n равнобедренных треугольников (две стороны каждого - радиусы описанной окружности). Тогда угол при вершине одного такого треугольника (центральный угол) будет равен 360°/n, а сумма углов при его основании равна искомому углу n - угольника. То есть 180-360/n или 180(1-2/n) или 180*(n-2)/n.
5. Радиус вписанной в многоугольник окружности окружности, проведенный к стороне этого многоугольника в точку касания, перпендикулярен к его стороне и является высотой одного из n равнобедренных треугольников, на которые делится многоугольник отрезками, проведенными к его вершинам из центра вписанной окружности. Площадь одного такого треугольника равна произведению высоты (радиуса вписанной окружности) на половину стороны (сторона многоугольника), к которой проведена эта высота (1/2)*r*a. Таких треугольников n. Значит площадь многоугольника равна n*(1/2)*a*r. Но n*(1/2)*a - это полупериметр многоугольника. Следовательно, его площадь равна произведению полупериметра на радиус вписанной окружности, то есть S=p*r.
6. Правильный многоугольник можно вписать в окружность. Тогда эта  окружность делится его вершинами на n частей, а круг, описанный данной окружностью, на n равнобедренных треугольников (две стороны каждого - радиусы описанной окружности, а основание - сторона многоугольника). Учитывая, что угол при вершине такого треугольника равен α=360°/n, имеем: Sin(α/2)=(a/2):R (отношение противолежащего катета к прилежащему). Тогда окончательная формула для стороны многоугольника: а=2R*Sin(180°/n).
Поскольку радиус r вписанной окружности - это высота указанного выше равнобедренного треугольника, а радиус R описанной окружности - его боковая сторона, то R=r*Cos(180°/n).
7. Стороны правильного треугольника (а они равны) можно выразить через:
его периметр: а=Р/3, высоту(биссектрису, медиану) треугольника а=2*h√3/3, площадь треугольника: a²=4S√3/3, радиус описанной окружности: a=R√3, радиус вписанной окружности: a=2r√3.
4,5(89 оценок)
Ответ:
sharunovamaria01
sharunovamaria01
22.07.2021

1) 

Радиус вписанной окружности правильного многоугольника совпадает с его апофемой (т.е. перпендикуляром, опущенным из центра на любую сторону) 

Правильный шестиугольник можно разделить на 6 правильных треугольников. Его площадь равна площади 6 таких треугольников и  S(шестиугольника)=6•S (треуг) 

Нам известен радиус вписанной в шестиугольник окружности, т.е. высота правильного треугольника АОВ (см. рисунок). Для нахождения площади правильного треугольника воспользуемся формулой 

S= \frac{h^2}{ \sqrt{3} }

Тогда S _{6} = \frac{6* 3^{2} }{ \sqrt{3} }18 \sqrt{3} дм²

––––––––––

2)

По условию 2 \pi r_{1}-2 \pi r _{2} =2 \pi R

Примем коэффициент отношения радиусов окружностей равным а. Тогда радиус первой равен 5а, второй –3а

5a-3a=40⇒

a=20 см

r1=100 см=1м

S1=π•1²=π м²

60 см=0,6 м 

S2=π•(0,6)²=0,36 м²

–––––––––––

3)

 Найдите площадь сегмента круга, радиуса 4 см, если его хорда равна 4√2 см

Пусть центр круга О, хорда - АВ. 

АО=ВО ⇒∆ АОВ - равнобедренный

По т.косинусов АВ²=АО²+ВО²- 2АО•ВО•cos∠AOB

32=2•16-2•16•cosAOB⇒

cos AOB=0, ⇒ ∠АОВ=90°. 

Площадь искомого сегмента равна разности площадей сектора с углом 90° и прямоугольного ∆ АОВ. 

Градусная мера полного круга 360°, значит, площадь сектора с углом 90°=1/4 площади круга 

S сектора=16π:4=4π

S ∆ АОВ=4•4:2=4•2

S сегм=4π-4•2=4(π-2)= ≈4,566 см²

4)

Отношения отрезков сторон треугольника АВС, на которые их делят данные точки,  одинаковы.

 Примем коэффициент отношения отрезков сторон равным а. 

Тогда АВ=7а. 

Треугольники у вершин подобны треугольнику АВС, т.к. имеют общую вершину и  стороны исходного треугольника пропорциональны сторонам треугольников, «отсекаемых» от него у вершин, с коэффициентом подобия 7:2, Поэтому эти отсекаемые треугольники равновелики. 

 Отношение площадей подобных треугольников равно квадрату коэффициента подобия. 

k=АВ:ВК=7:2 ⇒

S (ABC):S(BKM)=k²= 49/4

 245:S(BKM)=49:4⇒

S(Δ BKM)=20

S(ТКМОНР)=245-3•20=185 мм²


Надо 1. найдите площадь правильного шестиугольника, описанного около окружности, радиус которой раве
4,8(91 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ