ответ: 60°; 15°.
Объяснение:
16) из уравнения окружности следует, что радиус окружности =
V18 = 3V2 = CA = CB
радиус, проведенный в точку касания, перпендикулярен касательной, ---> треугольники СВО и САО -это равные прямоугольные треугольники (по гипотенузе и катету);
СО -биссектриса угла АОВ, т.е. достаточно найти острый угол прямоугольного треугольника (например, СОА) и умножить на 2...
гипотенуза СО -это диагональ квадрата со стороной 6, СО=6V2;
sin(COA) = 3V2 / (6V2) = 1/2
угол СОА = 30°
угол ВОА = 60°
10) прямая у=х -это биссектриса первого и третьего координатных углов, т.е. угол наклона прямой ОВ к оси ОХ 45°; вторая прямая имеет угловой коэффициент k=V3 -это тангенс угла наклона прямой к оси ОХ (можно построить соответствующие прямоугольные треугольники), т.е. угол наклона прямой ОА к оси ОХ 60°;
искомый угол = разности этих углов 60°-45°=15°.
ВС=√15; ВD=2ВМ = 2*2=4 ; DС=АВ=1
по формуле герона
р=(√15+4+1)/2=(√15+5)/2
s=√(p(p-BC)(p-BD)(p-DC))=√((√15+5)/2)((√15+5)/2-√15)((√15+5)/2-4)((√15+5)/2-1)=
√((√15+5)/2)((-√15+5)/2)((√15-3)/2)((√15+3)/2)=√(((√15+5)(5-√15)(√15-3)(√15+3))/16)
=√(((25-15)(15-9))/16)=√60/√16=2√15/4
2*3.87/4=1.94