№2
Sabc=1/2 * АС*ВД
АС=6+4=10 см
ВД=ДС=4 см, т.к. ΔВДС - р/б; ∠С=45°; ∠СВД=90-45=45°
S=1/2 * 10 * 4=20 cм².
№3
Р=20 см; сторона а=5 см
Пусть х и у - половины диагоналей
х+у=14 : 2=7 см
Если одна половина диагонали = х, то вторая (7-х)
Рассм. один из 4-х маленьких прямоугольных треугольников, на которые диагонали делят ромб.
Катеты х и (7-х); гипотенуза а=5 см. По т.Пифагора
5²=х²+(7-х)²
х²+49-14х+х²-25=0
2х²-14х+24=0
х²-7х+12=0
D=49-4*1*12=1
х1=(7+1)/2=4 см, тогда у1=7-4=3 и наоборот.
Диагонали: 8 и 6 см
S=1/2 * 8 * 6=4*6=24 cм² - это ответ.
Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.
Объяснение:
Рисунок прилагается.
Дано: ABC прямоугольный треугольник, ∠ С = 90°, CH- высота, AH = 2 см - проекция катета AC на гипотенузу, BH = 18 см - проекция катета BC на гипотенузу.
Найти катеты AC и BC.
Обозначим для удобства катеты AC = a, BC = b, проекции катетов AH = a₁, BH = b₁, высоту CH = h.
Высота в прямоугольном треугольнике, опущенная на гипотенузу, равна среднему пропорциональному проекций катетов на гипотенузу.
h² = a₁*b₁ = 2 * 18 = 36; h = 6
⇒ Высота треугольника, опущенная на гипотенузу CH = h = 6 см.
Из прямоугольного ΔACH по теореме Пифагора:
a² = h² + a₁² = 6² + 2² = 36 + 4 = 40; a = √40 = 2√10
Катет AC = 2√10 см/
Из прямоугольного ΔBCH по теореме Пифагора:
b² = h² + b₁² = 6² + 18² = 36 + 324 = 360; b = √360 = 6√10
Катет BC = 6√10 см.
Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.