Пусть ad = a1d1 — равные биссектрисы, ∠a = ∠a1, ac = a1c1 — равные стороны. в δаdс = δa1d1c1: ∠dac = ∠d1a1c1 (т.к. ∠dac половина угла ∠bac ∠dac = ∠bac : 2 = ∠b1a1c1 : 2 = ∠d1a1c1). ad = a1d1, ас = а1с1. (по условию: ad = a1d1 — равные биссектрисы, aс = a1c1 — равные прилежащие стороны). таким образом, δadc = δа1d1c1 по 1-му признаку равенства треугольников, откуда ∠с = ∠с1 как лежащие против равных сторон в равных треугольниках) в δabcи δа1в1с1: ас = а1с1, ∠а = ∠а1 (по условию) ∠с = ∠с1. таким образом, δabc = δа1в1с1 по 1-му признаку равенства треугольников, что и требовалось доказать.
Меньшая боковая сторона будет равна высоте трапеции, проведённой из вершины тупого угла к большему основанию. После того как мы опустим высоту из тупого угла, рассмотрим образовавшийся прямоугольный треугольник, в нём один из острых углов 45 гр (по условию), значит и второй острый угол тоже 45 гр, тогда мы видим, что образовавшийся треугольник равнобедренный, его катеты равны разности большего и меньшего оснований, т.е. 15 - 10 = 5 см, Меньшая боковая сторона будет равна высоте трапеции равна её высоте и равна катетам треугольника. ответ: 5 см