1 на рисунке 2 ответ:
DA=26,1 см, DC= 26,1 см
Пошаговое объяснение:
Воспользуемся теоремой о серединном перпендикуляре к отрезку:
"Любая точка, лежащая на серединном перпендикуляре к отрезку равноудалена от концов этого отрезка". Точка D лежит на серединном перпендикуляре к отрезку АВ и к отрезку ВС.
Следовательно, верны равенства: DB=DA=DC
Т.к. по условию, DB=26,1 см, то DA=DC=26,1 см
3 ответ:
9
Объяснение:
Три высоты пересекаются в одной точке. Т.к. две высоты пересекаются в одной точке, через эту точку проходит и третья высота, таким образом BN - высота р/б тр-ка потому что проходит через точку пересечения высот, т.к. AC - основание BN - не только высота но и медиана, значит n - середина AC, NC = 1/2 AC = 9
4Точка D равноудалена от всех сторон треугольника, то она является точкой пересечения биссектрис данного треугольника.
Против меньшего угла всегда расположена короткая сторона.
Найдем угол, под которым видна короткая сторона, используя данные углы
Сумма углов треугольника равна 180 градусам
Получаем, 180 - (106/2 + 52/2) = 101 градус
5 Решение:
Серединный перпендикуляр пересекает сторону ВС в т.К.
Рассмотрим треугольники :ВКД и ДКС-они прямоугольные.
1) ДК- общая,
2)ВК=КС- по условию,
3)УголВКД=углуДКС, отсюда следует,что треугольники: ВКД=ДКС-по признаку равенства треугольников( по двум сторонам и углу между ними).
Значит ВД=ДС=30(см.),
АД= АС-ДС=40-30=10(см.)
ответ: 10см.;30см.
там цифры немного не правильные
Объяснение:
Основная формулировка содержит алгебраические действия — в прямоугольном треугольнике, длины катетов которого равны {\displaystyle a}a и {\displaystyle b}b, а длина гипотенузы — {\displaystyle c}c, выполнено соотношение:
{\displaystyle a^{2}+b^{2}=c^{2}}a^{2}+b^{2}=c^{2}.
Возможна и эквивалентная геометрическая формулировка, прибегающая к понятию площади фигуры: в прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах. В таком виде теорема сформулирована в Началах Евклида.
Обратная теорема Пифагора — утверждение о прямоугольности всякого треугольника, длины сторон которого связаны соотношением {\displaystyle a^{2}+b^{2}=c^{2}}a^{2}+b^{2}=c^{2}. Как следствие, для всякой тройки положительных чисел {\displaystyle a}a, {\displaystyle b}b и {\displaystyle c}c, такой, что {\displaystyle a^{2}+b^{2}=c^{2}}a^{2}+b^{2}=c^{2}, существует прямоугольный треугольник с катетами {\displaystyle a}a и {\displaystyle b}b и гипотенузой {\displaystyle c}c.