Уравнение прямой, проходящей через заданные точки А(6;-3) В(-9;-1) имеет канонический вид: Подставляем координаты точек: Получаем уравнение: Это же уравнение в общем виде: 2х - 12 = -9у -27 2х + 9у + 15 = 0 Это же уравнение в виде с коэффициентом: у = -(2/9)х - (15/9).
Составить уравнение окружности и прямой используя координаты одной точки М(3;-2) и радиус, равный 4 см, невозможно, так как через одну точку можно провести множество окружностей. Нужны координаты центра окружности (Хо; Уо). Тогда уравнение окружности будет иметь вид: (Х - Хо)² + (У - Уо)² = R².
Найдите координаты точки, лежащей в плоскости xoy и равноудаленной от точек A(0;1;0), B(-1;0;1), C(0;-1;0). Решаем как частный случай Искомая точка , обозначаем через M , должна находится на плоскости перпендикулярной отрезка AC и проходящую через ее середину ( требование условия MA = MC) , но в данном случае это совпадает с плоскостью xoz ||см. A(0;1;0) и C(0;-1;0)||, т.е. ординат этой точки равно нулю Y(M) =0.Но c другой стороны M ∈(xoy) ⇒ X(M) =0 . * * * M (x ; 0 ;0) * * * MA =MB ⇔ √((x-0)² +(0 -1)²+ (0 -0)²) = √( (x+1)² +(0 -0)²+ (0 -1)²) ⇔ √(x² +1) = √( x²+2x +2) ⇒ x² +1 =x²+2x +2 ⇒ x= -0,5.
ответ: M(-0,5 ; 0; 0 ).
P.S. Общий случай три уравнения с тремя переменными M(x ; y ; z) Между прочем в этом примере точка B(-1;0;1) тоже ∈ (xoz) ⇒ BA =BC.
8см, он же равнобедреный