По-горизонтали: 2. певучий и виртуозный деревянный духовой инструмент симфонического оркестра с диапазоном от ре малой октавы до ля (си бемоль) третьей октавы.3. инструмент, изготовлением которого прославились мастера амати, гварнери, страдивари.7. самый низкий деревянный духовой инструмент симфонического оркестра.8. ударный инструмент.10. деревянный духовой инструмент, хорошо мечтательное, задумчивое настроение.13. музыкальный инструмент, охватывающий практически полный диапазон симфонического оркестра.14. самый высокий медный духовой инструмент симфонического оркестра.15. один из струнных смычковых музыкальных инструментов.по-вертикали: 1. самый высокий деревянный духовой инструмент симфонического оркестра.4. самый низкий струнный смычковый инструмент симфонического оркестра.5. струнный инструмент, густым и певучим тембром. этому инструменту часто предназначены выразительные соло в оркестре.6. медный духовой инструмент, предком которого был охотничий горн. часто исполняет в оркестре аккомпанирующую партию.8. медный духовой инструмент с выдвижной кулисой.9. ударный инструмент с настраиваемой высотой звучания, в форме нескольких котлов, обтянутых сверху кожей.11. самый крупный медный духовой инструмент.12. один из самых древних струнных инструментов. вошел в состав симфонического оркестра в 19 веке.ответыпо-горизонтали: 2.кларнет. 3.скрипка. 7.фагот. 8.тарелки. 10.гобой. 13.фортепиано. 14.труба. 15.альт.по-вертикали: 1.флейта. 4.контрабас. 5.виолончель. 6.валторна. 8.тромбон. 9.литавры. 11.туба. 12.арфа.
2) ΔABE - равнобедренный ⇒ Опустим из точки В на основание АЕ высоту ВН ⇒ АН = НЕ = AE/2 = 8 см.
Высота равнобедренного треугольника, проведенная к его основанию, является медианой и биссектрисой.
CB⊥α ⇒ CB⊥(ABE)
Если прямая перпендикулярна плоскости, то она перпендикулярна любой прямой, лежащей в этой плоскости.
CB⊥AB, CB⊥BE, CB⊥AE, CB⊥BH
ΔCBA = ΔCBE по двум катетам:
СВ - общая сторона
АВ = ВЕ - из равнобедренного ΔАВЕ
Значит, АС = СЕ ⇒ ΔАСЕ - равнобедренный.
В ΔАСЕ опустим из точки С на основание АЕ высоту. Высота должна пройти через середину АЕ, то есть через точку Н.
Следовательно, расстояние от точки C до стороны треугольника AE равно СН, ρ (С;АЕ) = СН - искомое расстояние.
В ΔАВН (∠ВНА = 90°): По теореме Пифагора
АВ² = ВН² + АН²
ВН² = АВ² - АН² = 10² - 8² = 100 - 64 = 36
ВН = 6 см
В ΔСВН (∠СВН = 90°): По теореме Пифагора
СН² = СВ² + ВН² = 4² + 6² = 16 + 36 = 52
Значит, СН = √52 = 2√13 см.
ответ: 2√13 см
3) а) AD ⊥ пл. АВС, следовательно, AD ⊥ СВ;
AD ⊥ BC, AC⊥ CB, то по теореме о 3-х перпендикулярах DC ⊥ ВС, то есть треугольник CBD - прямоугольный.
б) DCB = 90*, BD2 = DC2 + BC; BD = (вектор)4 + 6 = 10
Объяснение: