1—задача
O∈DE, DE||BC, DE - искомый отрезок
Радиус в точку касания перпендикулярен касательной.
Через точку можно провести только один перпендикуляр к прямой.
BC⊥AC => OE⊥AC => E - точка касания
△ADE~△ABC (по соответственным при DE||BC)
DE/BC =AE/AC => DE =3*3/4 =2,25 (см)
Объяснение:
Избавься от ограничений
ПОПРОБУЙ ЗНАНИЯ ПЛЮС СЕГОДНЯ
bananchikY
18 часов назад
Геометрия5 - 9 классы
ответ дан
1) В равнобедренном треугольнике, точка пересечения медиан отдалена от основания на 2a. Найдите расстояние от середины боковой стороны до основания.
2) Две стороны равнобедренного треугольника равны 15 см и 40 см. Найдите стороны подобного к нему треугольника, если его периметр составляет 190 см.
3) В равнобокой трапеции диагонали являются биссектрисами тупых углов. Расстояния от точки пересечения диагоналей к основаниям трапеции равны 2,25 см и 9,75 см. Найдите периметр трапеции, если средняя линия равна 8 см.
1
СМОТРЕТЬ ОТВЕТ
Войди чтобы добавить комментарий
Реклама
ответ
0
ant20202020
главный мозг
11.4 тыс. ответов
42.2 млн пользователей, получивших
1. ответ 3а, во вложении пояснения.
2. стороны в 15 см не могут быть боковыми сторонами, иначе 15+15<40 не выполняется неравенство треугольника, и значит, основание 15, а две боковые стороны по 40 см,
периметр подобного исходного треугольника равен 40+40+15=95, а периметр подобного 190, что в 2 раза больше , значит, каждая сторона подобного в два раза больше исходного. и тогда его стороны 15*2=30/см/, а две другие стороны по 40*2=80 см.
ответ 30см, 80 см, 80 см.
3. ответ (16+16√3) смво вложении пояснения.
Высота правильной четырёхугольной пирамиды равна 12 см, а сторона основания равна 24 см. Вычисли двугранный угол при основании.
——————————————————
Основание правильной четырехугольной пирамиды – квадрат.
Все боковые грани правильной пирамиды образуют с плоскостью основания равные углы, а высота проходит через центр основания, который является центром вписанной и описанной около основания окружностей.
Двугранный угол здесь образован радиусом вписанной окружности и апофемой, как отрезками. перпендикулярными ребру основания в одной точке (по т. о трех перпендикулярах).
Радиус вписанной в квадрат окружности равен половине его стороны.
r=24:2=12 (см)
Соединив основание апофемы с центром основания ( основанием высоты пирамиды), получим прямоугольный треугольник.
При этом катеты- высота пирамиды и половина стороны основания - равны 12 см.
Следовательно, треугольник - равнобедренный. Острые углы равнобедренного прямоугольного треугольника равны 45º.⇒ Искомый угол равен 45º.
1) из лубой одной точки можно провести бесчисленное множество лучей...
2) можно получить дополнительно бесчисленное множество...
3) АВ=а, тогда прямой (а) принадлежит один отрезок АВ(ограниченный точками А и В) и, возможно, три координатных отрезков: (-oo ; A] , [A ; B] , [B ; +oo) .
4) (рассчитанно по правилу сложения векторов).
P.S. oo - это знак бесконечности( если что=) )...