Основание треугольника, средняя линия, половины боковых сторон, прилегающие к основанию (не к вершине) образуют равнобокую трапецию суммы длин противоположных сторон трапеции равны если а - боковая сторона треугольника, а/2 - боковая сторона трапеции, b - нижнее основание треугольника (и трапеции) b/2 - средняя линия треугольника (верхнее основание трапеции), то а/2+а/2=b+b/2 значит 4a=3b - соотношение, связывающее длины боковых сторон (а) и длину основания (b) такого треугольника можно еще и угол у основания найти cos(alpha)=(b/2)/a=2/3
Отношение высот параллелограмма равно 3:4, а сумма этих высот - 63. Найди площадь параллелограмма, если его периметр равен 42.
Объяснение:
1) Пусть одна часть высоты х ед, тогда большая высота 4х ед , меньшая высота 3х ед. Сумма длин высот 63=4х+3х ⇒х=9.
Тогда большая высота 4*9=36 (ед) , меньшая 27 ед.
2) Р(параллелограмма)= 42 ед, полупериметр 21 ед.
Найдем стороны параллелограмма.
Пусть меньшая сторона у ед, тогда большая (21-у) ед.
Значение площади не изменится если искать площадь по разным основаниям S=a*h :
S=y*36 или S=(21-y)*27 ⇒ 36y= (21-y)*27 , 63y=21*27 ,y=9.
S=9*36=324(ед²).