Обозначим точку пересечения высот обеих плоскостей и АВ через О; Найдем ДО -высоту равнобедренного треугольника она будет высотой медианой в равнобедренном треугольнике , так же как и ОС будет высотой медианой в равностороннем треугольнике.ДА^2-АО^2=2^2+(\/3)^2=1;Откуда ДО=1; Ищем СО^2: АС^2-АО^2=12-3=9; Откуда СО=3; Итак имеем 3стороны треугольника: с величинами :1;3; и \/7; По ТЕЛРЕМЕ косинусов найдем угол ДОС; ДС^2=ДО^2+ОС^2-2ДО*ОС*cosДОС; Подставим и получим числовой результат: 7=1+9-6*cosДОС; 6cosДОС=3; Cos ДОС=1/2; Откуда угол ДОС равен 60* ; ответ угол наклона ДОС равен 60*;
1. Диагональ осевого сечения делит квадрат на два равнобедренных прямоугольных треугольника с острыми углами в 45° H=4√2·sin45°=4 Диаметр основания D(основания)=Н=4 R=D/2=2 V=πR²H=π2²·4=16π В ответе 16π:π=16 2. V₁:V₂=πR²₁H₁:πR²₂H₂=3²·5:5²·3=3:5=0,6 3. Диагональ осевого сечения делит прямоугольник на два равных прямоугольных треугольника с острыми углами в 30° и 60°. Катет, против угла в 30°( высота цилиндра) равен половине гипотенузы 4/2=2 Диаметр основания по теореме Пифагора D= √(4²-2²)=√12=2√3 Радиус основания R=D/2=√3 V=πR²H=π(√3)²·2=6π В ответе 6π:π=6 4) S(бок. цилиндра)=2π·R·H 2π·R·H=2π R·H=1 D=1 ⇒ 2R=1 ⇒ R=1/2 H=2 V=πR²H=π(1/4)·2=(1/2)π В ответе (1/2)π:π=1/2=0,5