М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
36kot361
36kot361
30.10.2022 21:54 •  Геометрия

Знайдіть площу трапеції, основи якої дорівнюють 8 см і
14 см, а бічна сторона
дорівнює 10 см і утворює з
більшою основою кут 30°.
О55 см^2
О 11 см^2
O220 см^2
О110 см^2​


Знайдіть площу трапеції, основи якої дорівнюють 8 см і14 см, а бічна сторонадорівнює 10 см і утворює

👇
Открыть все ответы
Ответ:
julyyushchenko
julyyushchenko
30.10.2022

1) определение перпендикуляра и наклонной.

пусть дана плоскость и не лежащая на ней точка.

тогда:

·   отрезок прямой, перпендикулярной плоскости, соединяющий данную точку с точкой на плоскости называется перпендикуляром из данной точки к данной плоскости.

·   конец этого отрезка, лежащий в плоскости, называется основанием перпендикуляра.

·   любой отрезок, соединяющий данную точку с точкой на плоскости и не являющийся перпендикуляром к плоскости, называется наклонной.

·   конец отрезка, лежащий в плоскости, называется основанием наклонной.

рис. 1.

на рисунке из точки а проведены к плоскости α перпендикуляр ав и наклонная ас. точка в - основание перпендикуляра, точка с - основание наклонной, вс - проекция наклонной ас на плоскость α.

2) доказательство того, что перпендикуляр корочек наклонной

 

на рисунке 2 изображена плоскость α, перпендикуляр к ней ao, наклонная ab, а также показан отрезок bo, соединяющий основания наклонной и перпендикуляра. отрезки ao, bo и ab образуют δaob.

рис. 2.

рассмотрим δaob, из определения перпендикуляра следует, что он прямоугольный. перпендикуляр ao является катетом этого треугольника, а наклонная ab – его гипотенузой. катет прямоугольного треугольника всегда меньше его гипотенузы (по теореме пифагора), следовательно, перпендикуляр всегда короче наклонной.

3) определение проекции

отрезок, соединяющий основания перпендикуляра и наклонной, проведенных из одной и той же точки, называется проекцией наклонной.

 

отрезок bo на рисунке 2 – является проекцией наклонной ab.

4) теорема о сравнительной длине наклонных и их проекций

а) любая наклонная больше своей проекции.

доказательство:

вновь рассмотрим δaob, изображенный на рис. 2, из определения перпендикуляра следует, что он прямоугольный. проекция bo является катетом этого треугольника, а наклонная ab – его гипотенузой, т. к. катет прямоугольного треугольника всегда меньше его гипотенузы, следовательно, проекция наклонной на плоскость всегда короче самой наклонной.

б) равные наклонные имеют равные проекции

доказательство: рассмотрим треугольники aob и aod, они равны, т. к. равны их гипотенузы ab и ad, и углы aob и aod (они прямые), а сторона ao у них общая. из равенства треугольников следует и равенство их сторон bo = od, что и требовалось доказать.

 

в) если проекции наклонных равны, то и наклонные равны. доказывается аналогично утверждению б.

г) большей наклонной соответствует большая проекция.

доказательство:

рассмотрим прямоугольные треугольники aob и aod, ab > ad.

=  

=  

но так как ab > ad => ab2 > ad2 => >   =>

=> bo > do. что и требовалось доказать.

 

д) из двух наклонных больше та, у которой проекция больше. доказывается аналогично г.

4,7(22 оценок)
Ответ:
рвовттатс
рвовттатс
30.10.2022

2. 336.

4. 64.

Объяснение:

2) ABCD - прямоугольник => BC = AD = 28 см ; AC = BD, AO = OC = BO = OD =>

треугольник AOB равнобедренный, AD - основание.

OH - высота (по условию) => OH - медиана (по теореме о высоте, проведенной из вершины равнобедренного треугольника) => AH = HB.

AO = OC, AH = HD => OH - средняя линия треугольника ADC => OH = 1/2 * DC =>

DC = 6 * 2 = 12 см.

Площадь ABCD = AD * DC = 28 * 12 = 336 см квадратных.

ответ : 336 см квадратных.

4) Достроим прямую AB и точку M до прямоугольника KBCM.

ABCD - квадрат => AB = BC = DC = AD = MD.

Площадь треугольника MBC = 1/2 * MC * BC.

MC = 2 * AB, BC = AB => Площадь треугольника MBC = 1/2 * 2 * AB * AB = AB^2 (AB в квадрате).

64 = AB^2;

AB = (корень из 64)

AB = 8 см.

Площадь квадрата ABCD = AB^2.

Площадь квадрата ABCD = 8 * 8 = 64 см квадратных.

ответ : 64 см квадратных.

4,4(6 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ