. Так как АВ||СD, то угол ABD равен углу BDC, Треугольники ABD и BDC равнобедренные, так как их боковые стороны AB, BD и BC - радиусы окружности и равны 5. Диагональ АС может быть найдена из треугольник ABC (он тоже равнобедренный, АС - его основание), Надем АС из свойства синуса угла В при вершине данного треугольника. Угол B=β+γ, из тругольника BDC γ=180−2β. Тогда угол B=β+180−2β=180−β. Из равнобедренного треугольника ABC имеем AC=2∗AB∗sin(180−β2)=10∗sin(90−β/2)=10∗cos(β/2). cos(β/2) найдем из равнобедренного треугольника ABD: cos(β/2)=h/AB, где h - высота данного треугольника (обозначена синей линией на рисунке). h=52−32−−−−−−√=4, тогда cos(β/2)=4.5, следовательно, AC=10∗45=8. ответ 8.
Призма - правильная четырехугольная. в основании её - квадрат. диагональ наклонена к плоскости основания под углом 45°. значит, диагональ квадрата - основания и высота призмы - катеты равнобедренного прямоугольного треугольника с гипотенузой - диагональю призмы. длина этой гипотенузы дана в условии - 4 см пусть х - катеты этого треугольника 4=х√2 х=4: √2=4√2: (√2*√2)=2√2 диагональ основания квадрата =2√2 высота призмы =2√2 основание цилиндра - круг, ограниченный вписанной в квадрат окружностью. радиус этой окружности равен половине стороны квадрата - основания призмы. найдем эту сторону из формулы диагонали квадрата: d=а√2 мы нашли d=2√2, значит сторона квадрата а=2 r= 2: 2=1 имеем цилиндр, высота которого по условию равна высоте призмы и равна 2√2, радиус основания цилиндра, найденный в процессе решения r =1 площадь боковой поверхности цилинда равна произведению длины окружности основания и высоты цилиндра. s =2πr*h= 2π*2√2 см²=4π√2 см²