ΔАВС - равнобедренный ⇒ ∠А= ∠С - углы при основании равны АВ=ВС - боковые стороны равны АС - основание. По условию ∠А= 2∠В ⇒ ∠А =∠C > ∠В Напротив большего угла лежит большая сторона, а напротив большей стороны - больший угол ⇒ АВ=ВС = 16 см , АС = 4 см. Площадь треугольника можно найти по формуле Герона: S= √ (р *(р-а)(р-b)(р-с) ) р- полупериметр ; a,b,c - стороны треугольника ⇒ т.к. ΔАВС - равнобедренный ⇒ S= √ р *2(р-АВ)(р-АС) р= (АВ+ВС+АС)/2 = (16*2+4)/2 = 18 см S= √(18*2(18-16)(18-4) ) = √(18*2*2*14 ) = √1008 =√(144*7)= 12√7 см
В ортонормированном базисе заданы векторы а=(2; -3;1) b=(-1;2;0). Найти вектор с, перпендикулярный векторам а и b, длина которого равна единице.
Находим вектор d, перпендикулярный двум заданным с векторного произведения.
I j k| I j
2 -3 1| 2 -3
-1 2 0| -1 2 = 0i – 1j + 4k – 0j – 2i – 3k = -2i – 1j + 1k.
Вектор d = (-2; -1; 1), его модуль равен √((-2)² + (-1)² + 1²) = √6.
Вектор «с» с единичной длиной получим из вектора d, разделив его на его же модуль.
c = ((-2/√6); (-1/√6); (1/√6)).