См. рисунок в приложении наклонная FA⊥ AD , так как её проекция ВА⊥AD наклонная FO⊥AC , так как её проекция ВО ⊥ AC ( BD⊥AC- диагонали квадрата взаимно перпендикулярны)
По теореме Пифагора диагональ квадрата АС=√(4²+4²)=4√2 Диагонали квадрата в точке пересечения делятся пополам АО=ОС=ВО=ОD=2√2
По теореме Пифагора из Δ AFB AF²=AB²+FB²=4²+8²=16+64=80 AF=√80=4√5 Аналогично расстояние FC до стороны CD равно 4√5
По теореме Пифагора из Δ FBO FO²=AO²+FB²=(2√2)²+8²=8+64=72 FO=√72=6√2
Расстояние до стороны АВ; ВС и диагонали BD равно FB=8
См. рисунок в приложении наклонная FA⊥ AD , так как её проекция ВА⊥AD наклонная FO⊥AC , так как её проекция ВО ⊥ AC ( BD⊥AC- диагонали квадрата взаимно перпендикулярны)
По теореме Пифагора диагональ квадрата АС=√(4²+4²)=4√2 Диагонали квадрата в точке пересечения делятся пополам АО=ОС=ВО=ОD=2√2
По теореме Пифагора из Δ AFB AF²=AB²+FB²=4²+8²=16+64=80 AF=√80=4√5 Аналогично расстояние FC до стороны CD равно 4√5
По теореме Пифагора из Δ FBO FO²=AO²+FB²=(2√2)²+8²=8+64=72 FO=√72=6√2
Расстояние до стороны АВ; ВС и диагонали BD равно FB=8
Соsα = KH·PM/|KH|·|PM|
KH{-6; 4}
PM{6; -3}
KH·PM = -6·6 + 4·(-3) = -36 -12 = -48
|KH)=√((-6)² + 4²) = √52
|PM| =√(6² +(-3)²) = √45
Cosα = -48/6√65= -8/√65