М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Dasha12357123
Dasha12357123
05.04.2022 04:40 •  Геометрия

Если два угла треугольника равны по 60(градусов), то такой треугольник равносторонний.докажите это. как это доказать в письменном виде? объясните

👇
Ответ:
LizaLongoo
LizaLongoo
05.04.2022

Сума углов треугольника должна быть 180 градусов. Если 2 угла равны 60 градусам, тогда третий тоже.

180-60-60= 60

Углы все равны, поэтому и называется равносторонний треугольник.

4,4(69 оценок)
Открыть все ответы
Ответ:
Katya007goi
Katya007goi
05.04.2022
Перпендикуляр OM образовывает прямоугольные треугольники AMO и BMO. Для них верно, из теоремы Пифагора:
AO^2 = OM^2 + 3^2
BO^2 = OM^2 + 12^2
Но при этом для большого прямоугольного треугольника ABO верно:
15^2 = AO^2 + BO^2
Сложим два первых выражения:
AO^2 + BO^2 = 2*OM^2 + 9 + 144 = 2*OM^2 + 153
И приравняем со вторым:
225 = 2*OM^2 + 153
2*OM^2 = 225 - 153 = 72
OM^2 = 36
OM = 6
Теперь подставим в первое выражение и найдём половинки диагоналей, т.е. AO и BO:
AO^2 = 36 + 9 = 45
AO = \sqrt{45} = 3*\sqrt{5}
BO^2 = 36 + 144 = 180
BO = \sqrt{180} = 6*\sqrt{5}
Площадь ромба равна половине произведения диагоналей. Не забываем, что мы нашли половинки диагоналей, т.е.:
S = 1/2 * 2*AO * 2*BO = 2*AO*BO = 2 * 3*\sqrt{5} * 6*\sqrt{5} = 36 * 5 = 180 см^2
Перпендикуляр, опущенный из точки пересечения диагоналей ромба на его сторону, делит ее на отрезки 3
4,8(73 оценок)
Ответ:
kolyakorolev
kolyakorolev
05.04.2022
Перпендикуляр OM образовывает прямоугольные треугольники AMO и BMO. Для них верно, из теоремы Пифагора:
AO^2 = OM^2 + 3^2
BO^2 = OM^2 + 12^2
Но при этом для большого прямоугольного треугольника ABO верно:
15^2 = AO^2 + BO^2
Сложим два первых выражения:
AO^2 + BO^2 = 2*OM^2 + 9 + 144 = 2*OM^2 + 153
И приравняем со вторым:
225 = 2*OM^2 + 153
2*OM^2 = 225 - 153 = 72
OM^2 = 36
OM = 6
Теперь подставим в первое выражение и найдём половинки диагоналей, т.е. AO и BO:
AO^2 = 36 + 9 = 45
AO = \sqrt{45} = 3*\sqrt{5}
BO^2 = 36 + 144 = 180
BO = \sqrt{180} = 6*\sqrt{5}
Площадь ромба равна половине произведения диагоналей. Не забываем, что мы нашли половинки диагоналей, т.е.:
S = 1/2 * 2*AO * 2*BO = 2*AO*BO = 2 * 3*\sqrt{5} * 6*\sqrt{5} = 36 * 5 = 180 см^2
Перпендикуляр, опущенный из точки пересечения диагоналей ромба на его сторону, делит ее на отрезки 3
4,7(51 оценок)
Новые ответы от MOGZ: Геометрия
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ