Извините что так много, но музыка для меня - это ! мелодия - душа музыки. это не просто размышление это есть факт. мелодия-душа музыки. мелодия всецело принадлежит музыке. мелодия-это мысль, это движение, это душа музыкального произведения! мелодия-это душа не только музыки но и человека! мелодия – единственная форма музыки; без мелодии музыка немыслима, а музыка и мелодия неразрывны. мелодия может заставить задуматься, улыбаться,грустить,она как и душа человека дает понять то что она несет,каждая нотка пропитывает нас,лостигает наших чувств. в каждой из песен — своя мелодия: веселая, задорная, нежная или грустная. мелодию можно спеть голосом со словами или напеть без слов, можно сыграть на каком-нибудь инструменте или сразу на нескольких. она может звучать с сопровождением других инструментов, других мелодий, аккордов аккомпанемента. разные мелодии самые различные настроения, чувства человека. не случайно говорят: «мелодия — душа музыки»
Допускаю, что решение не относится к конструктивной геометрии. К простой - относится. Возможно, оно Вам Понадобятся : циркуль, линейка, угольник с прямым углом для построения параллельных прямых, транспортир, карандаш. 1). Чертим окружность данного радиуса. 2).Под ней чертим произвольную прямую с точкой касания с окружностью в точке Н. 3). От Н вправо откладываем НК, приближенно равную по длине данной стороне. 4). От К как от вершины строим данный угол с транспортира ( или по методике построения угла) 5). Из центра О проводим к этой стороне угла перпендикуляр ОТ по стандартному методу. 6). Через точку пересечения ОТ и окружности проводим параллельно КТ касательную к окружности. Точку ее пересечения с прямой НК обозначим А. Это вершина угла заданной величины. 7). От А откладываем длину данной стороны. Ставим точку В. ВН по свойству касательной из одной точки равен длине отрезка от В до точки касания окружности с третьей стороной. 8). Раствором циркуля, равным ВН, проводим из В, как из центра, полуокружность до пересечения с окружностью в точке Е. 9). Из В через т.Е проводим касательную до пересечения с прямой, проведенной из вершины А, т.е. со второй стороной угла А. Точка пересечения С будет третьей вершиной треугольника. Треугольник АВС построен.