В геометрии есть тождества (формула): sin^2 d+ cos^2 d = 1 1.sin^ d + (24\25)^2 = 1 ; sin^2 d + 576\625 = 1; sin^2 d = 1 - 576\625; sin^2 d = 49\625; sin d = 7\25. 2.Для решения дальше понадобится тождество с тангенсом: tg d = sin d\cos d Синус и косинус нам уже известны, осталось только поделить. tg d= 7\25 :24\25; tg d = 7\24. 3. На рисунке я взяла произвольный угол из двух оставшихся. Разницы нет. Косинус это прилежащяя сторона \ на гипотенузу. Синус это противолежащяя сторона \ на гипотенузу. Выходит что синус равен 12\37.
AC^2=AM^2+MC^2-2*AM*CM*cosAMC
Теорема косинусов для треугольника BМC
BC^2=BM^2+MC^2-2*BM*CM*cosBMC
AC=BC (треугольник равносторонний) Тогда AC^2=BC^2
AM^2+MC^2-2*AM*CM*cosAMC=BM^2+MC^2-2*BM*CM*cosBMC
AM^2-2*AM*CM*cosAMC=BM^2-2*BM*CM*cosBMC
АМ и ВM знаем
2^2-2*2*CM*cosAMC=10^2-2*10*CM*cosBMC
4-4*CM*cosAMC=100-20*CM*cosBMC
Углы ВМС и ВАС равны, опираются на одну дугу. ВАС=60 - равносторонний треугольник.
Угол АМС=АМВ+ВМС=АСВ+ВАС=60+60=120
4-4*CM*cos120=100-20*CM*cos60
4-4*CM*(-1/2)=100-20*CM*1/2
4+2*CM=100-10*CM
12*CM=96
СМ=8