ответ:
v = 5√3/6 ед³.
sбок = 144 ед².
объяснение:
судя по тому, что ∠авс= 120°, параллелепипед не прямоугольный, а прямой. это "две большие разницы".
итак, высота параллелепипеда равна 9см, а в основании прямого параллелепипеда лежит параллелограмм со стороной вс = 5 см, диагональю ас=7см и углом авс = 120°. по теореме косинусов попробуем найти сторону ав.
ас² =ав²+вс² - 2·ав·вс·cos120. cos120 = -cos60 = - 1/2.
49 = ab²+25 - 2·ab·5·(-1/2) =>
ав²+5·ав -24 =0 => ab = 3cм
so = ab·bc·sin120 = 3·5·√3/2.
v = so·h = (3·5·√3/2)·9 = 5√3/6 ед³. (площадь основания, умноженная на высоту).
sбок = р·h = 2(3+5)·9 = 144 ед² ( периметр, умноженный на высоту)
Поскольку АС=ВС, треугольник равнобедренный, значит угол А=В=30. Из точки В проведём высоту ВМ к АС. В полученном прямоугольном треугольнике АМВ угол А=30 по условию. Тогда угол МВА=90-30=60. Но угол В=30. Это значит что высота ВМ проходит за пределами треугольника и точка М лежит на продолжении АС. Расстояние от точки М до К и будет искомым. В треугольнике АВС проведём высоту СД к основанию АВ. Тогда АД=АС*cos 30=10*(корень из 3)/2=5 корней из 3. АВ=2АД=10 корней из3. Перпендикуляр ВМ к АС из точки В равен ВМ=АВ*sin30=(10 корней из 3)*1/2=5 корней из 3. Отсюда искомое расстояние МК=корень из(ВМ квадрат+ ВК квадрат)=корень из (75+150)=15. Поскольку МК и МВ это перпендикуляры к АС.