1. Первоначальные сведения по геометрии появились за 4-5 тысячелетий до наших дней в Древнем Египте. В этих краях ежегодные разливы Нила смывали посевы. Поэтому для того чтобы восстанавливать посевы и уточнять размеры налогов, необходимо было размечать поля и выполнять необходимые подсчёты.
2. Древнегреческие учёные переняли у египтян измерения и учёта земель и назвали эти знания геометрией. "Геометрия" - слово, происходящее от греческих слов "reo" - земля, "метрео" - измерять.
3. Евклид, Пифагор, Мухаммад аль-Хорезми, Ахмад Фергани, Абу Райхан Беруни, Абу Али ибн Сина.
4. Памятник Кок Минор напоминает нам форму цилиндра, а на его поверхности фигуры, похожие на круги, овалы и ромбы.
5. Геометрия изучает пространственные структуры и отношения.
Объяснение:
Вроде всё!)
∟DBK = 60°
Объяснение:
решение вопроса
+4
Дано: ∟ABC - прямий (∟ABC = 90°). ∟ABE = ∟EBF = ∟FBC.
BD - бісектриса ∟ABE, ВК - бісектриса ∟FBC. Знайти: ∟DBK.
Розв'язання:
Нехай ∟ABE = ∟EBF = ∟FBC = х.
За аксіомою вимірюваиня кутів маємо:
∟ABC = ∟ABE + ∟EBF + ∟FBC.
Складемо i розв'яжемо рівняння:
х + х + х = 90; 3х = 90; х = 90 : 3; х = 30. ∟ABE = ∟EBF = ∟FBC = 30°.
За означениям бісектриси кута маємо:
∟ABD = ∟DBE = 30° : 2 = 15°; ∟CBК = ∟KBF = 30° : 2 = 15°.
За аксіомою вимірювання кутів маємо:
∟ABC = ∟ABD + ∟DBK + ∟KBC, ∟DBK = ∟ABC - (∟ABD + ∟KBC),
∟DBK = 90° - (15° + 15°) = 90° - 30° = 60°. ∟DBK = 60°.