площадь полной поверхности состоит из двух площадей оснований и боковой поверхности. В основании ромб, его площадь ищется по формуле сторона в квадрате умножить на синус угла между сторонами. Т.е. (2√3)²*√3/2= 6√3, но оснований два, поэтому эту площадь умножаем на два. получаем 12√3/см²/
Диагональ ромба по теореме косинусов равна √2(2√3)²-2*(2√3)²1/2=(2√3), а высота призмы находится как диагональ ромба умноженная на tg30°, т.е. (2√3)*(1/√3)=2.
Чтобы найти боковую поверхность, надо периметр основания, т.е. 8√3 умножить на высоту призмы, т.е. на 2 получим 16√3
Сложив теперь полученные площади оснований с площадью боковой поверхности, получим площадь полной поверхности. 12√3+16√3=28√3
ответ верный ответ под номером № 3) , т.е. 28√3
Удачи!
РЕШЕНИЕ
сделаем построение по условию
построим осевое сечение пирамиды ∆SMM1 , где M - середина ED ; M 1- середина AB
точка О - проекция высоты на основание ; центр отрезка ММ1 ; M1O=OM
М1М2 - высота ∆SMM1 на боковую сторону ; SM - это расстояние между прямыми SM и AB
апофема SM перпендикулярна стороне основания DE , в свою очередь DE || AB , следовательно
угол между прямыми SM и AB равен 90 град
длина апофемы по теореме Пифагора SM^2 = SE^2 - ME^2 = SE^2 - (DE/2)^2
SM = √ (13^2 - (10/2)^2) = √144 =12 см
∆BCD -равнобедренный BC=CD=10 см ; < BCD =120 град
по теореме косинусов BD^2 =BC^2+BD^2 -2*BC*BD*cosBCD =10^2+10^2-2*10*10*cos120=300 ; BD =10√3 см
MM1 = BD =10√3 см ; ОМ = M1M / 2 =10√3 /2 =5√3 см
по теореме Пифагора высота SO = √ (SM^2 - OM^2) = √ (12^2 -(5√3 )^2 ) =√69
запишем площадь сечения ∆SMM1 - двумя приравняем S
1/2 *M1M2*SM = 1/2*SO*M1M
M1M2*SM = SO*M1M
M1M2 = SO*M1M / SM = √69 * 10√3 / 12 = 5√23 / 2 см
ОТВЕТ расстояние =5√23/2 см ; угол =90 град