М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
кор17
кор17
12.02.2022 12:11 •  Геометрия

у окружности с центром O провели касательную AB B точка касания найдите радиус окружности если AO = 12 см и угол AOB = 60

👇
Открыть все ответы
Ответ:
Саша7647
Саша7647
12.02.2022

Равнобедренный треугольник углы при основании равны 45+45=90 градусов вершина треугольника:а левый угол:b правый угол:c

180-90=90 градусов

2 угла при основании равны 90 градусов и верхний угол равен 90,можно сказать,что он прямоугольный треугольник боковые стороны равны у равнобедреного треугольника если начертить треугольник в полном размере то можно узнать что отрезок bc=примерно 18,5 см

если представить что b и c есть точка,которая напротив точки а,назовем точку:e так у нас получился квадрат

мы высчитываем его площадь:его сторону умножаем на 4 12.8x4=51.2 квадратных см

51.2:2=25.6 квадратных см

ответ:25.6 квадратных см

4,8(46 оценок)
Ответ:
tyrone12
tyrone12
12.02.2022

Это очень простая задача, и не понятно, что тут объяснять про √3.

Есть теорема синусов, из которой сразу следует, что сторона ВПИСАННОГО в окружность треугольника (для которого окружность радиуса R является описанной) равна 

a = 2*R*sin(60) (если очень хочется, то это то же самое, что a = R√3)

Теперь надо сообразить, что центры вписаной и описанной окружностей совпадают в правильном треугольнике с точкой пересечения медиан, и радиус описанной окружности - это отрезок медианы (любой) от вершины до точки пересечения, а радиус вписанной окружности - это отрезок медианы (высоты, биссектрисы, это одно и то же в правильном треугольнике) от точки пересечения до высоты. Точка пересечения медиан делит из на отрезки в отношении 2/1, то есть в правильном треугольнике радиус описанной окружности в два раза больше радиуса вписанной окружности. 

Отсюда для стороны ОПИСАННОГО вокруг окружности треугольника b справедливо 

b = 2*R1*sin(60), где R1 - радиус ОПИСАННОЙ вокруг ВНЕШНЕГО треугольника окружности. Как я только что показал, R1 = 2*R (это тот самый R, который надо найти, потому что для внешнего треугольника окружность радиуса R - вписанная).

Получается

b = 4*R*sin(60) = 2*a.

То есть разность длин сторон равна длине стороны внутренного треугольника и половине стороны внешнего. А разность периметров равна периметру вписанного треугольника, конечно. Чтобы получить сторону меньшего треугольника, надо просто эту заданную разность периметров поделить на 3.

Это все.

Хотя соотношение b = 2a можно показать и "чисто" геометрически.

Дело в том, что вписанная во внешний треугольник окружность пересекает медианы посередине между вершиной и центром. То есть сторона внутреннего треугольника - это средняя линяя в треугольнике с вершиной в центре окружности и стороной внешнего треугольника в качестве основания. ЧТД.

 

Само решение очень простое -

18√5/3 = a = R√3; R = 2√15;

 

Насчет формул. Геометрия - это наука, построенная на логике и воображении, поэтому "формулы" являются всего лишь инструментом, причем второстепенным. 

4,4(82 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ