Вписанная в ромб окружность делит его сторону на отрезки 4,5 см и 2 см. Вычисли длину вписанной в ромб окружности (π=3,14).
(ответ округли до сотых.)
Объяснение:
Пусть ABCD-ромб, точка O – это центр вписанной окружности , F — точка касания окружности со стороной ромба AB.
Тогда ОF⊥ АВ, по свойству касательной, AF=4,5 см , BF=2 см.
Δ ВОА-прямоугольный ( диагонали ромба взаимно-перпендикулярны)Т.к. высота в прямоугольном треугольнике есть среднее пропорциональное между проекциями, то
r=ОF=√BF*FA,
r=√(4,5*2)=√9=3 (см).
Длина окружности С=2пr
С=2•3,14•3= 18,84 ( см).
Вписанная в ромб окружность делит его сторону на отрезки 4,5 см и 2 см. Вычисли длину вписанной в ромб окружности (π=3,14).
(ответ округли до сотых.)
Объяснение:
Пусть ABCD-ромб, точка O – это центр вписанной окружности , F — точка касания окружности со стороной ромба AB.
Тогда ОF⊥ АВ, по свойству касательной, AF=4,5 см , BF=2 см.
Δ ВОА-прямоугольный ( диагонали ромба взаимно-перпендикулярны)Т.к. высота в прямоугольном треугольнике есть среднее пропорциональное между проекциями, то
r=ОF=√BF*FA,
r=√(4,5*2)=√9=3 (см).
Длина окружности С=2пr
С=2•3,14•3= 18,84 ( см).
? а так вообще может быть ? что-то у меня получается, что это возможно или для остроугольного треугольника с углами 72,72,36 или для тупоугольного с углами 36,36,108 - но это целые количества градусов... =(