Периметр Р=сумма всех сторон
1) Обозначим меньшую сторону за Х, тогда вторая сторона У=Х+3 Р=х+у+х+у или Р=2х+2у заменим у на х+3 и получим Р=2х+2(х+3), решаем несложное уравнение 24=4х+6 4х=24-6 4х=18 х=18:4 х=4,5 см тогда вторая сторона 4,5+3=7,5см ответ: 4,5 см и 7,5 см
2) Обозначим большую сторону за Х, тогда вторая сторона У=Х-2 Р=х+у+х+у или Р=2х+2у заменим у на х-2 и получим Р=2х+2(х-2) 24=4х-4 4х=24+4 4х=28 х=28:4 х=7см вторая сторона 7-2=5 см ответ: 5 см и 7 см
3) Обозначим меньшую сторону за Х, тогда вторая сторона У=Х*2 Р=х+у+х+у или Р=2х+2у заменим у на х*2 и получим Р=2х+2(2х), решаем уравнение 24=6х х=24:6 х=4 см тогда вторая сторона 4*2=8см ответ: 4 см и 8 см
Пусть есть трехмерная система координат. На каждой из осей надо отложить от начала координат отрезки равной длины в обе стороны. Получится 6 точек, которые и будут вершинами октаэдра.
К примеру, если вершины (0,0,a) (0,0,-a) (0,a,0) (0,-a,0) (a,0,0) (-a,0,0)
то ребро равно c = a√2. Если очень хочется, можно найти, чему равно а при заданной длине ребра c = √6(√2 + 1). a = √3(√2 + 1); Но это не очень существенно.
Легко видеть, что в каждой из плоскостей, содержащих две оси координат, лежат одинаковые квадраты со стороной c.
Вот тут самая важная часть решения.
"С точки зрения вписанного куба" сечения, проходящие через оси XOZ и YOZ - это прямоугольники сo сторонами b и b√2 где b - ребро куба.
Эти сечения проходят через ребро куба, параллельное оси Z и диагонали горизонтальных граней.
В сечении плоскостью XOY лежит квадрат со стороной b, НЕ касающийся квадрата со стороной c (октаэдра).
То есть получается такая задача для нахождения b (при заданном c)
"В квадрат со стороной c = √6(√2 + 1) вписан прямоугольник со сторонами b и b√2, стороны которого параллельны диагоналям квадрата. Надо найти b^2".
Очевидно, что c = (b/2)*√2 + (b√2/2)*√2 = (b√2/2)(√2 + 1);
Отсюда b = 2√3; b^2 = 12;