Пусть ABC' — произвольный треугольник. Проведем через вершину B прямую, параллельную прямой AC (такая прямая называется прямой Евклида) . Отметим на ней точку D так, чтобы точки A и D лежали по разные стороны прямой BC.Углы DBC и ACB равны как внутренние накрест лежащие, образованные секущей BC с параллельными прямыми AC и BD. Поэтому сумма углов треугольника при вершинах B и С равна углу ABD.Сумма всех трех углов треугольника равна сумме углов ABD и BAC. Так как эти углы внутренние односторонние для параллельных AC и BD при секущей AB, то их сумма равна 180°. Теорема доказана. 2) Внешним углом треугольника при данной вершине называется угол, смежный с углом треугольника при этой вершине.
Теорема: Внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним
Доказательство. Пусть ABC – данный треугольник. По теореме о сумме углов в треугольнике ∠ ABС + ∠ BCA + ∠ CAB = 180 º. Отсюда следует ∠ ABС + ∠ CAB = 180 º - ∠ BCA = ∠ BCD Теорема доказана.
Из теоремы следует: Внешний угол треугольника больше любого угла треугольника, не смежного с ним. 3) Сумма углов треугольника = 180 градусов. Если один из углов прямой (90 градусов) на два остальных приходится тоже 90. значит, каждый из них - меньше 90 то есть они - острые. если один из углов - тупой, то на два остальных приходится менее 90 то есть они явно острые. 4) тупоугольный - больше 90 градусов остроугольный - меньше 90 градусов 5) а. Треугольник, у которого один из углов равен 90 градусов. б. Катеты и гипотенуза 6) 6°. В каждом треугольнике против большей стороны лежит больший угол и обратно: против большего угла лежит большая сторона. Любой отрезок имеет одну и только одну середину. 7) По теореме Пифагора: квадрат гипотенузы равен сумме квадратов катетов, значит гипотенуза больше каждого из катетов 8) --- тоже самое, что и 7 9) сумма углов треугольника равно 180 градусов. а если бы аждая сторона треугольника была бы больше суммы двух других сторонон, то сумма углов была бы больше 180, что невозможно. следовательно - каждая сторона треугольника меньше суммы двух других сторон. 10) Сумма углов любого треугольника равна 180 градусам. Т. к. этот треугольник прямоугольный, то один из углов у него прямой, т. е. равен 90 градусам. Следовательно, сумма двух других острых углов равна 180-90=90 градусов. 11) 1. рассмотрим прямоугольный треугольник ABC в которм угол А - прямой, угол В = 30 градусам а угол С = 60.Приложим к треугольнику АВС равный ему треугольник АВD. Получим треугольни BCD в котором угол B = углу D = 60 градусов, следовательно DC = BC. Но по построению АС 1/2 ВС, что и требовалось доказать.2. Если катет прямоугольного треугольника равен половине гипотенузы, то угол, лежащий против этого катета равен 30 градусам.докажем это.рассмотрим прямоугольный треугольник АВC, у которого катет АС равен половине гипотенузы АС.Приложим к треугольнику АВС равный ему треугольник ABD. Получит равносторонний треугольник BCD. Углы равностороннего треугольника равны друг другу(т.к. против равных строн лежат равные углы), поэтому каждый из них = 60 градусам. Но угол DBC = 2 угла ABC, следовательно угол АВС = 30 градусов,что и требовалось доказать.
1) Геометрическое место точек, равноудаленных от точек А и В - это серединный перпендикуляр к прямой АВ. Вектор АВ{Xb-Xa;Yb-Ya;Zb-Za} ={1;4-1}. Середина вектора АВ - точка Р((1+0)/2;(2-2)/2; (0-1)/2) или Р(0,5;0;-0,5) Теперь надо найти точку М(0;0;z), чтобы вектор МР был перпендикулярен вектору АВ. Вектор МР{0,5-0;0-0;z-(-0,5)} = {0,5;0;z+0,5}. Векторы являются перпендикулярными тогда и только тогда, когда их скалярное произведение равно нулю. Скалярное произведение векторов AB{1;4;-1} и MP{0,5;0;z+0,5}: (AB*MP) = Xab*Xco+Yab*Yco+Zab*Zco =1*0,5+4*0+(-1)*(z+0,5). Условие: 0-z=0 => z=0. ответ: z=0. 2) Векторы СО и АВ будут равными, если они сонаправлены и равны по модулю. Сонаправленные вектора, это вектора, координаты которых пропорциональны и коэффициент пропорциональности ПОЛОЖИТЕЛЕН. Вектор АВ{1-0;2-(-2);-1-0} = {1;4;-1}, вектор CO{0-x;0-y;0-0} = {-x;-y;0}. |AB|=√(1²+4²+(-1)²)=√18. |CO|=√((-x)²+(-y)²+0²). Если модули равны, то и квадраты модулей равны. x²+y² = 18. -x/1=-y/4 y=4x. x²+16x²=18 x²=18/17. x≈1,03 y²=18-18/17 =288/17 ≈17. y≈4,16. CO={1,03;4,16;0} 3) Векторы являются перпендикулярными тогда и только тогда, когда их скалярное произведение равно нулю. Скалярное произведение векторов ВА{-1;-4;1} и m{Xm;1;2}: (ВА*m)= 1*Xm+4*Ym+Zab*Zm Или (BA*m)= (-1)*Xco-4*1+1*2=0. => Xm= -2. ответ: Xm= -2.
Доказательство
Пусть ABC' — произвольный треугольник. Проведем через вершину B прямую, параллельную прямой AC (такая прямая называется прямой Евклида) . Отметим на ней точку D так, чтобы точки A и D лежали по разные стороны прямой BC.Углы DBC и ACB равны как внутренние накрест лежащие, образованные секущей BC с параллельными прямыми AC и BD. Поэтому сумма углов треугольника при вершинах B и С равна углу ABD.Сумма всех трех углов треугольника равна сумме углов ABD и BAC. Так как эти углы внутренние односторонние для параллельных AC и BD при секущей AB, то их сумма равна 180°. Теорема доказана.
2) Внешним углом треугольника при данной вершине называется угол, смежный с углом треугольника при этой вершине.
Теорема: Внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним
Доказательство. Пусть ABC – данный треугольник. По теореме о сумме углов в треугольнике
∠ ABС + ∠ BCA + ∠ CAB = 180 º.
Отсюда следует
∠ ABС + ∠ CAB = 180 º - ∠ BCA = ∠ BCD
Теорема доказана.
Из теоремы следует:
Внешний угол треугольника больше любого угла треугольника, не смежного с ним.
3) Сумма углов треугольника = 180 градусов. Если один из углов прямой (90 градусов) на два остальных приходится тоже 90. значит, каждый из них - меньше 90 то есть они - острые. если один из углов - тупой, то на два остальных приходится менее 90 то есть они явно острые.
4) тупоугольный - больше 90 градусов
остроугольный - меньше 90 градусов
5) а. Треугольник, у которого один из углов равен 90 градусов.
б. Катеты и гипотенуза
6) 6°. В каждом треугольнике против большей стороны лежит больший угол и обратно: против большего угла лежит большая сторона. Любой отрезок имеет одну и только одну середину.
7) По теореме Пифагора: квадрат гипотенузы равен сумме квадратов катетов, значит гипотенуза больше каждого из катетов
8) --- тоже самое, что и 7
9) сумма углов треугольника равно 180 градусов. а если бы аждая сторона треугольника была бы больше суммы двух других сторонон, то сумма углов была бы больше 180, что невозможно. следовательно - каждая сторона треугольника меньше суммы двух других сторон.
10) Сумма углов любого треугольника равна 180 градусам.
Т. к. этот треугольник прямоугольный, то один из углов у него прямой, т. е. равен 90 градусам.
Следовательно, сумма двух других острых углов равна 180-90=90 градусов.
11) 1. рассмотрим прямоугольный треугольник ABC в которм угол А - прямой, угол В = 30 градусам а угол С = 60.Приложим к треугольнику АВС равный ему треугольник АВD. Получим треугольни BCD в котором угол B = углу D = 60 градусов, следовательно DC = BC. Но по построению АС 1/2 ВС, что и требовалось доказать.2. Если катет прямоугольного треугольника равен половине гипотенузы, то угол, лежащий против этого катета равен 30 градусам.докажем это.рассмотрим прямоугольный треугольник АВC, у которого катет АС равен половине гипотенузы АС.Приложим к треугольнику АВС равный ему треугольник ABD. Получит равносторонний треугольник BCD. Углы равностороннего треугольника равны друг другу(т.к. против равных строн лежат равные углы), поэтому каждый из них = 60 градусам. Но угол DBC = 2 угла ABC, следовательно угол АВС = 30 градусов,что и требовалось доказать.