Из той же точки проведем перпендикуляр к прямой, он с наклонными будет образовывать два прямоугольных треугольника Сразу найдем длины наклонных: первая наклонная = 8/ sin 30 = 8 * 2/1 = 16 см вторая наклонная = 8/ sin 45 = 8 * 2/√ 2 = 16√2 = 8√ 2
теперь найдем длины их проекций 1 проекция = 8/ tg30 = 8* √3 = 8√3 2 проекция = 8/ tg45 = 8/1 = 8
Расстояние между основаниями наклонных равно сумме 2-ух проекций: расстояние = 8 + 8 √3
Сама задача имеет много решений - можно стороны находить через синусы, косинусы, тангенсы, котангенсы, и через теорему Пифагора
3) Три Соединим все три вершины. Получился треугольник, две стороны которого - стороны параллелограмма, и третья - его диагональ так как, убрав у любого параллелограмма вершину, и стороны, которые проходят через нее, получаем треугольник, состоящий из двух сторон и диаг. паралл. Выбор расположения четвертой точки зависит от выбора стороны треуг., которая будет диагональю. Тогда возможны три варианта, так как у треуг. три стороны. Чтобы построить паралл. при заданной диагонали, достаточно из концов диагонали построить прямые, параллельные сторонам, лежащим против соответствующих вершин. Точка их пересечения - четвертая вершина паралл. 2) Периметр равен 10 смотри рисунок - треуг AKM - равноб так как KM || BC => KM=AK; ML = KB Тогда ML + KM = AK + KB ML+KM=5 P = 2(ML+KM)=10
Сразу найдем длины наклонных:
первая наклонная = 8/ sin 30 = 8 * 2/1 = 16 см
вторая наклонная = 8/ sin 45 = 8 * 2/√ 2 = 16√2 = 8√ 2
теперь найдем длины их проекций
1 проекция = 8/ tg30 = 8* √3 = 8√3
2 проекция = 8/ tg45 = 8/1 = 8
Расстояние между основаниями наклонных равно сумме 2-ух проекций:
расстояние = 8 + 8 √3
Сама задача имеет много решений - можно стороны находить через синусы, косинусы, тангенсы, котангенсы, и через теорему Пифагора