В плоскости К1L1M1N1 линией сечения заданной плоскостью будет отрезок РС, параллельный диагонали L1N1 и равный её половине.
Диагональ параллелепипеда К1М и заданная плоскость пересекутся в диагональной плоскости КК1М1М по линии КД. Точка Д - это середина отрезка РС. Точка Д делит диагональ К1М1 в отношении 1:3.
В сечении получили подобные треугольники К1ЕД и КЕМ.
Коэффициент подобия равен 3/4.
В таком отношении заданная секущая плоскость разделит диагональ К1М.
ответ: плоскость сечения делит диагональ МК1 в отношении 3:4.
Построение:
1) Соединим точки КМ;
2) Грани KLMN и K₁L₁M₁N₁ — параллельны, поэтому построим прямую в плоскости K₁L₁M₁N₁ параллельную прямой КМ через точку М₁;
3) В точке пересечения этой прямой и ребра отметим точку, данная точка уже есть — это точка К₁
Доказательство:
1) Противоположные стороны построенного сечения являются противоположными ребрами параллелепипеда, значит они равны и параллельны;
2) Вторая пара сторон является диагоналями противоположных (граней параллелепипеда, значит они также равны и параллельны;
3) Следовательно построенные сечения являются параллелограммами, что и требовалось доказать.
АК - биссектриса ⇒ ∠ВАК=∠ДАК
ВК:КС=3:5 ⇒ ВК=3х , КС=5х ⇒ ВС=ВК+КС=8х
∠ДАК=∠АКВ как внутренние накрест лежащие ⇒
ΔАВК - равнобедренный и АВ=ВК=3х
Периметр Р=2(АВ+ВС)=2(3х+8х)=22х=66
х=3
АВ=СД=3х=3*3=9 (см)
ВС=АД=8х=8*3=24 (см)