Высота равнобедренного треугольника, опущенная на основание является медианой, то есть делит основание на 2 равных отрезка, т.е. AH = HC = AC : 2 = 16 : 2 = 8 (см)
Тогда боковую сторону можем найти по теореме Пифагора: BC = \sqrt{BH^{2} + HC^{2}} = \sqrt{8^{2} + 15^{2}} = \sqrt{64 + 225} = \sqrt{289} = 17 (cm)BC=
BH
2
+HC
2
=
8
2
+15
2
=
64+225
=
289
=17(cm)
Пользуясь определениями синуса, косинуса, тангенса и котангенса найдем их для <C. Будем рассматривать прямоугольный треугольник BHC:
\begin{gathered}sin < C = \frac{BH}{BC} = \frac{15}{17}cos < C = \frac{HC}{BC} = \frac{8}{17}tg < C = \frac{BH}{HC} = \frac{15}{8} = 1\frac{7}{8} ctg < C = \frac{HC}{BH} = \frac{8}{15}\end{gathered}
Пусть АВС - равнобедренный треугольник с вершиной А, основанием ВС, известными боковыми сторонами AB=AC= a (см). BD - известная медиана, проведенная к боковой стороне АС. В равнобедренном треугольнике медианы, проведенные к боковым сторонам, равны. BD=CE= b (cм) Медианы равнобедренного треугольника пересекаются в одной точке О (центре тяжести треугольника), которая делит каждую из них в отношении 2:1, считая от угла, из которого они исходят ⇒ BO=CO= b* 2/3 = 2b/3 DO=EO=b * 1/3 = b/3 Строим треугольник. Чертим отрезок AB, равный а см. Находим середину этого отрезка и отмечаем точку Е. Раствором циркуля, равным EO, чертим дугу окружности с центром в точке Е. Раствором циркуля, равным ВО, чертим дугу окружности с центром в точке В. Дуги пересекутся в точке О, которая является центром тяжести данного треугольника. Из точки Е через точку О чертим отрезок CE, равный известной медиане (b). Соединяем точки A, B, C. Получаем искомый треугольник
1.Смежные углы-два угла, у которых одна сторона общая, а две другие являются дополнительными лучами. Сумма смежных углов 180 градусов. 2. Треугольник-это геометрическая фигура, образованная тремя лучами, соединяющими три точки, не лежащих на одной прямой. Построение: сначала строим один из заданных отрезков, а потом от каждой из точек, ограничивающих его, с циркуля откладываем две других стороны. Соединяем эти точки с точкой пересечения дуг. 3.1)МВ=NB(по условию) 2)DB=KB(по условию) 3) угол MBD=углу NBK(как вертикальные), значит треугольники равны по первому признаку равенства треугольников.
sin<C=
BC
BH
=
17
15
cos<C=
BC
HC
=
17
8
tg<C=
HC
BH
=
8
15
=1
8
7
ctg<C=
BH
HC
=
15
8
Объяснение:
Высота равнобедренного треугольника, опущенная на основание является медианой, то есть делит основание на 2 равных отрезка, т.е. AH = HC = AC : 2 = 16 : 2 = 8 (см)
Тогда боковую сторону можем найти по теореме Пифагора: BC = \sqrt{BH^{2} + HC^{2}} = \sqrt{8^{2} + 15^{2}} = \sqrt{64 + 225} = \sqrt{289} = 17 (cm)BC=
BH
2
+HC
2
=
8
2
+15
2
=
64+225
=
289
=17(cm)
Пользуясь определениями синуса, косинуса, тангенса и котангенса найдем их для <C. Будем рассматривать прямоугольный треугольник BHC:
\begin{gathered}sin < C = \frac{BH}{BC} = \frac{15}{17}cos < C = \frac{HC}{BC} = \frac{8}{17}tg < C = \frac{BH}{HC} = \frac{15}{8} = 1\frac{7}{8} ctg < C = \frac{HC}{BH} = \frac{8}{15}\end{gathered}
sin<C=
BC
BH
=
17
15
cos<C=
BC
HC
=
17
8
tg<C=
HC
BH
=
8
15
=1
8
7
ctg<C=
BH
HC
=
15
8
Объяснение: