Дан правильный многоугольник и длина радиуса R окружности, описанной около многоугольника. Определи площадь многоугольника, если: - у многоугольника 12 сторон и R= 16 см
(если корня в ответе нет, под знаком корня пиши 1).
S= ___⋅√ см2;
- у многоугольника 18 сторон и R= 16 см
(при использовании синусов, косинусов или тангенсов их значения округли до тысячных, ответ округли до целых).
S= см2.
касательной). Следовательно, угол МВА равен половине угла МВС, а значит ВА - биссектриса угла МВС. Что и требовалось доказать.
б). Если точка С , принадлежащая прямой АС, равноудалена от прямых АМ и АВ, следовательно эта прямая является биссектрисой угла, образованного этими прямыми.
То есть <MAC=<CAB.
<МАВ равен половине градусной меры дуги АСВ по свойству угла между касательной (МА) и хордой (АВ). По этому же свойству <MAC равен половине градусной меры дуги АС. Но <MAC равен половине <МАВ. Следовательно, точка С делит дугу АСВ пополам, что и требовалось доказать.