Общепринято мнение, что египетский треугольник с соотношением сторон 3:4:5 активно применялся для построения прямых углов египетскими землемерами и архитекторами, например, при построении пирамид.
Для построения прямого угла использовался шнур или верёвка, разделённая отметками (узлами) на 12 (3+4+5) частей: треугольник, построенный натяжением такого шнура, с весьма высокой точностью оказывался прямоугольным и сами шнуры-катеты являлись направляющими для кладки прямого угла сооружения.
Судя по всему, именно попытка обобщения отношения квадратов, характерного для египетского треугольника, на любые прямоугольные треугольники и привела Пифагора к доказательству знаменитой теоремы.
Так как точка Р является серединой АВ, а точка Q серединой АС, то РQ – средняя линия треугольника АВС.
Средняя линия параллельна одной из сторон треугольника. Тоесть PQ//BC.
Тогда угол AQP=угол АСВ как соответственные при параллельных прямых PQ u BC и секущей АС;
Угол ВАС – общий;
Тогда ∆АВС~∆APQ по двум углам.
Так как точка Р является серединой АВ, то АР/АВ=1/2, а точка Q серединой АС, то AQ/AC=1/2.
Следовательно: АР/АВ=AQ/AС, тоесть стороны ∆APQ относятся к сторонам ∆АВС в равных отношениях, тоесть стороны одного треугольника пропорциональны сторонам другого;
Угол ВАС – общий;
Тогда ∆АВС~∆APQ по двум пропорциональным сторонам и углу между ними.