Если предположить, что равносторонний конус - это конус, у которого длина образующей равна диаметру основания, то ответ: Проведём осевое сечение конуса с вписанным в него шаром. Получим равносторонний треугольник с вписанной в него окружностью. При нахождении отношений длину образующей можно принять равной 1. Sk = So+Sбп So = πD²/4 = π*1²/4 = π/4 Sбп = πRL = π*(1/2)*1 = π/2 Sk = π4 + π/2 = 3π/4 Радиус шара равен 1/3 высоты треугольника в осевом сечении r = (1/3)Н = = (1/3)*scrt(1-(1/4)) = scrt3/6 = 1/2scrt3 Sш = 4πr² = 4π*(1/2scrt3)^2= 4π*1/12 = π*/3 Отсюда отношение площади полной поверхности конуса к площади поверхности шара равно (3π/4)/(π/3) = 9/4.
Дано: Решение. a = 2x см b = 3x см P = a + b + c = 54 => 2x + 3x + 4x = 54 c = 4x см 9x = 54 Р = 54 см x = 6 (см) Тогда: a = 2x = 12 (см) Найти: a=?,b=?,c=? b = 3x = 18 (см) c = 4x = 24 (см)
Проведём осевое сечение конуса с вписанным в него шаром.
Получим равносторонний треугольник с вписанной в него окружностью. При нахождении отношений длину образующей можно принять равной 1.
Sk = So+Sбп
So = πD²/4 = π*1²/4 = π/4 Sбп = πRL = π*(1/2)*1 = π/2
Sk = π4 + π/2 = 3π/4
Радиус шара равен 1/3 высоты треугольника в осевом сечении r = (1/3)Н =
= (1/3)*scrt(1-(1/4)) = scrt3/6 = 1/2scrt3
Sш = 4πr² = 4π*(1/2scrt3)^2= 4π*1/12 = π*/3
Отсюда отношение площади полной поверхности конуса к площади поверхности шара равно (3π/4)/(π/3) = 9/4.