1) Якщо трикутника ABC і FDK , то їх відповідні елементи теж рівні:
AB = FD, BC = DK, CA = KF
∠A = ∠F, ∠B = ∠D, ∠C = ∠K
Відповідно, якщо відрізок AC = 6 см, то відповідний йому відрізок — KF — теж рівний 6 см.
Якщо кут С = 60°, то відповідний йому кут — K — теж рівний 60°.
2) ∠AOB = ∠DOC — так як вертикальні
ВО = ОС, AO = OD — за умовою
Маємо трикутники АОВ та DOC, у яких рівні дві сторони та кут між ними. А це перша ознака рівності трикутників. Отже, ΔАОВ = ΔDOC
У рівних трикутників рівні і відповідні елементи:
AO = DO, BO = CO, AB = DC
Отже, AB = DC як відповідні еленти у ріних трикутниках.
3) Позначимо одну із сторін трикутника за х (см), тоді другу за х−6 (см), а третю – за х+10 (см). Периметр трикутника рівний 70. Складемо і розв'яжемо рівняння:
x+x−6+x+10 = 70
3x+4 = 70
3x = 66
x = 22
x = 22 см — довжина однієї сторони трикутника
х−6 = 22−6 = 16 см — довжина другої сторони трикутника
х+10 = 22+10 = 32 см — довжина третьої сторони трикутника
Відповідь: Довжини сторін трикутника рівні 16, 22 та 32 см.
1
1) δавс, ∟авс = 35 °, ∟асв = 83 °, вм и ск -
высоты, пересекаются в н. найходим внс.
2) δавс.
∟а = 180 ° - (∟abc + ∟асв),
∟а = 180 ° - (35 ° + 83 °) = 62 °.
3) δавм.
∟amb = 90 ° (вм - высота),
∟abm = 180 ° - (∟амв + ∟a), ∟abm = 28 °.
4) δквс.
∟вкс = 90 ° (ск - высота),
∟вск = 180 ° - (∟вкс + ∟квс),
∟вск = 55 °, ∟abc = 35 °,
∟abc = ∟abm + ∟mbc, 35 ° = 28 ° + ∟mbc, ∟mbc = 7 °.
5) δнвс.
∟нвс = 7 °, ∟bch = 55 °,
∟внс = 180 ° - (∟hbc + ∟всн),
∟внс = 180 ° - (7 ° + 55 °), ∟bhc = 180 ° - 62 ° = 118 °.
ответ 118
это точно все дано или было что-то еще?