Я не понимаю, зачем для таких простейших зависимостей выбрали именно графический Гораздо быстрее данную задачу решить аналитическим Первая функция - монотонно возрастающая на всей области определения, а прямая y=-1, параллельная оси Ox, пересечет ее ровно один раз. Это является следствием из того, что монотонна возрастающая функция y=3x принимает каждое свое значение ровно один раз, в частности, и значение y=-1. ответ: 1 точка пересечения. Еще проще - с уравнения. Приравниваем правые части равенств y=3x и y=-1: 3x=-1; x=-1/3. Отсюда получаем, что это точка единственная, так как из определения функции следует, что каждому значению аргумента соответствует одно единственное значение функции. ответ: 1 точка пересечения. Ну, и самый глупый и абсолютно бредовый для данного случая графический, то есть с графика. В прямолинейной системе координат строим график функции y=3x (удобней всего по точкам, ибо сдвиги здесь не особо нужны) и прямую y=-1. Получившийся чертеж наглядно доказывает: точка пересечения единственная. ответ: 1 точка пересечения.
(ABCD) | | OO₁ ; ∠AOB =120° ; OO₁ =10 см ; OH ⊥AB ; OH =2 см .
-------
S_(ABCD) -?
ABCD - прямоугольник
S_(ABCD) =AB*AD = AB* OO₁=10AB . Определим хорду AB .
∆OAB равнобедренный (OA = OB =r) , высота OH одновременно и медиана AH =BH =AB /2 и биссектриса * * * ∠AOH =(1/2)∠AOB =60°.* * *
∠ BAO= ∠ABO = (180° - ∠AOB ) /2 =90°- (1/2)∠AOB =90° -60° = 30° .
OH =OA/2 (катет против угла 30°) ⇒ OA =2*OH =2*2 см = 4 см и
AB = 2* AH = 2* √ (OA² -OH²) =2√ (4² -2²) =4√3 (см) .
* * * можно было сразу AB =2* AH = 2*OH*tq60° * * *
S_(ABCD) =10*4√3 = 40√3 (см ²) .
ответ : 40√3 см ² .