Тр-ки равны по 2 признаку равенства прямоугольных треугольников (если катет и прилежащий острый угол одного тр-ка соответственно равны катету и прилежащему острому углу другого тр-ка, то такие Тр-ки равны)
Тр-к АDO= тр-ку СDO - прямоугольные
АО=СО - по условию
<DAO=<DCO - по условию
Тр-ки равны по 2 признаку равенства прямоугольных треугольников (по катету и прилежащему острому углу)
б)
Тр-к АОВ=тр-ку DOC
AO=DO - по условию
ВО=СО - по условию
<АОВ=<DOC - как вертикальные
Тр-ки равны по 2 сторонам и углу между ними (1 признак)
Тр-к ВОD=тр-ку СОА
ВО=СО - по условию
АО=DO - по условию
<ВОD=<COA - как вертикальные
Тр-ки равны по 2 сторонам и углу между ними (1 признак)
Грань SCD и плоскость основания пирамиды пересекаются по прямой CD. Чтобы найти угол между этими плоскостями, рассмотрим треугольник SBC. Треугольник SBC -прямоугольный: SB перпендикулярна плоскости основания, а значит любой прямой, лежащей в плоскости основания, SB перпендикулярна BC. BC перпендикулярна CD, как стороны квадрата. SC- наклонная к плоскости основания перпендикулярна прямой CD по теореме о трех перпендикулярах-прямая (CD) проведенная в плоскости через основание наклонной(SC) перпендикулярно ее проекции (BC) на эту плоскость перпендикулярна и к самой наклонной.SC лежит в плокости грани SCD и перпендикулярна CD, BC лежит в плоскости основания и перпендикулярна CD , следовательно угол SCB -это угол между двумя плоскостями ABCD и SCD. Рассмотрим треугольник SBC и из этого треугольника найдем угол SCB. Найдем сторону квадрата: BD²=2BC², (4√2)²=2BC², BC²= 16·2/2=16, BC=4 ИЗ треугольника SBD ( треугольник SBD прямоугольный так как SB перпендикулярно плоскости основания) найдем SB: SB²=SD²-BD² SB²=(4√5)²-(4√2)²= 16·5-16·2=80-32=48, SB=√48=4√3. Из треугольника SBC : tg∠SCB=SB/BC=4√3/4=√3 tg∠SCB=√3, ∠SCB=60 градусов
Объяснение:
а)
Тр-к АВО=тр-ку СВО - прямоугольные
АО=СО - по условию
<ВАО=<ВСО - по условию
Тр-ки равны по 2 признаку равенства прямоугольных треугольников (если катет и прилежащий острый угол одного тр-ка соответственно равны катету и прилежащему острому углу другого тр-ка, то такие Тр-ки равны)
Тр-к АDO= тр-ку СDO - прямоугольные
АО=СО - по условию
<DAO=<DCO - по условию
Тр-ки равны по 2 признаку равенства прямоугольных треугольников (по катету и прилежащему острому углу)
б)
Тр-к АОВ=тр-ку DOC
AO=DO - по условию
ВО=СО - по условию
<АОВ=<DOC - как вертикальные
Тр-ки равны по 2 сторонам и углу между ними (1 признак)
Тр-к ВОD=тр-ку СОА
ВО=СО - по условию
АО=DO - по условию
<ВОD=<COA - как вертикальные
Тр-ки равны по 2 сторонам и углу между ними (1 признак)
2
Тр-к равнобедренный
Р=3,2 м
Боковая сторона = b м
Основание а=( b-1) м
Найти : а ; b
Р=2b+a
3,2=2b+(b-1)
3,2=2b+b-1
3,2=3b-1
3b=3,2+1
3b=4,2
b=1,4 м - боковая сторона
а=1,4-1=0,4 м - основание
ответ : 1,4 м ; 1,4 м ; 0,4 м