Обозначим точку пересения АМ с BD - точка Р Выберем точку К на стороне AD. АК=КD=ВМ=МС Проведем CK. СК || AM, так как треугольники АВМ и КСD равны по двум сторонам и углу между ними ( АВ=СD и ВМ=КD, угол В равен углу D) из равенства треугольников следует равенство углов (угол 1 равен углу 2, угол 3 равен углу 4), но и смежные к ним тоже равны, поэтому внутренние накрест лежащие углы равны, прямые параллельны
Точка пересечения СК с BD - точка Т По теореме Фалеса Из треугольника АРD: АК=KD, значит и РТ=ТD Из треугольника ВТС: ВМ=МС, значит и ВР=РТ ВР=РТ=РD ВР:PD=1:3
h² =a₁*b₁,где a₁ и b₁ проекции катетов a и b на гипотенузе(отрезки разд. высотой) || Пусть a₁ =9 см ; b₁= (h+4) см || .
h² =9(h+4) ;
h² -9h -36 =0 ;
[h= -3 ( не решения ) ; h =12 (см) .
b₁ =h+4 = 12+4 =16 (см).
Гипотенуза c = a₁+b₁ = 9 см+ 16 см =25 см .
a =√(a₁²+ h²) = √(9²+ 12²) =15 (см) . || 3*3; 3*4 ; 3*5 ||
или из a² =c*a₁=25*9⇒ a=5*3 =15 (см) .
b = (b₁²+ h²) = √(16²+ 12²) = 20 (см) . || 4*3; 4*4 ; 4*5 ||
или из b² =c*b₁=25*16 ⇒ b=5*4 =20 (см) .
ответ: 15 см, 20 см, 25 см . || 5*3; 5*4 ; 5*5 |