Задание1) Угол КАВ, образованный касательной АК и хордой АВ, проходящей через точку касания А, равен половине величины дуги АВ, заключённой между его сторонами, центральный угол АОВ тоже опирается на дугу АВ, а угол АСВ- вписанный угол, опирающийся на дугу АВ, поэтому равен половине величины центрального угла.
Т.о., углы АСВ и КАВ равны.
Задание 2. Т.к. углы АВК И ВАС- это внутренние накрест лежащие при КВ║АС и секущей АВ, то они равны, пусть в треугольнике АСВ углы при основании АВ углы А и В, например равны β, а угол С равен α, в сумме они составляют 2β+α=180°⇒α=180-2β; В треугольнике АВК угол А равен β,угол А равен α, чтобы найти угол К, надо от 180°отнять (α+β), заменим α=180-2β. получим 180-(180-2β)-β=180°-180°+2β-β=β.
Значит, при основании ВК есть два угла, равные β. По признаку ΔАВК- равнобедренный.
Задание 3. Найдем площадь треугольников АСВ и КАВ. У них есть по паре равных углов. значит, по 2 признаку подобия КАВ и АСВ подобны, значит, сходственные стороны у них пропорциональны. ВС/АВ=АС/АК=к- коэффициент пропорциональности. Синусы равных углов равны.
Площадь треугольника АСВ равна (BC*АС*sin∠ACB)=(BC²*sin∠ACB); площадь треугольника КАВ равна (АК*АВ*sin∠КАВ)=(АВ²*sin∠КАВ);
Найдем теперь отношение площадей
sΔАСВ/sΔКАВ=(BC²*sin∠ACB)/(АВ²*sin∠КАВ)=к², откуда видно, что от величины угла АСВ при данном условии отношение площадей не зависит.
Периметр ABK P=AB+BK+AK;
Периметр ABC=AB+AC+BC=AB+AK+KB+BC=2AB+2AK=2(AB+AK)=2(Pabk-BK)=2(16-5)=2*11=22 см
Задача 2
Т.к. AB=BC, AF=EC=AB/2=BC/2;
Рассмотрим треугольники AFC и CEA
Они равны по двум сторонам (AF=EC и AC - общая) и углу между ними (EAC=FCA)
Тогда углы EAC=FCA.
Значит, угол BAE=BAC-EAC=BCF
Углы FMA=EMC, как вертикальые
Тогда углы AFM=180-FMA-FAM=MEC
Значит, треугольники AFM=EMC по стороне (EC=AF) и двум прилежащим к ней углам (AFM=MEC и FAM=ECM)
Тогда AM=MC => треугольник AMC - равнобедренный