Точку из которой проведены наклонные обозначим К. Опусти из неё на плоскость перпендикуляр КС. Точки пересечения наклонных с плоскостью А и В. Получим отрезки наклонных АК, ВК и их проекции на плоскость АС и ВС. Треуольники АКС и ВКС равны как прямоугольные по острому углу и катету (Ф и КС). Тогда их строны АК и ВК равны. Обозначим их Х. Соединим А и В. Угол АСВ по условию равен В. Углы КАС и КВС равны Ф. АС=ВС=Х*cos Ф. По теореме косинусов АВ квадрат=(Х*cos Ф)квадрат +(Х*cos Ф)квадрат -2*Х*cos Ф*Х*cosФ*cosВ. Это в треугольнике АСВ. В треугольнике АКВ аналогично АВ квадрат=Х квадрат+Хквадрат-2*Х*Х* cos K. Приравниваем полученные выражения и получим cos K=1-(cos Ф)квадрат*(1-cos В). Где К искомый угол АКВ между наклонными.
1. АС- диагональ. По свойству прямоугольника мы знаем, что диагонали равны => ВС=10,5. 2. По свойсву паралеллограмма мы знаем, чтр диагонали пересекаются и делятся пополам, в данном случае точкой О => ВО = 5,25 см, АО=5,25. 3. уголСАD = 30 гр. . Угол ВАD = 90 гр.. => ВАС= ВАD-CAD. BAC = 90-30=60 гр. 4. Т.К. ВО=АО, треуг. АВО - р/б => АВD= 60гр. 5. Сумма углов треугольника = 180 гр. => 180-АВD-BAC =BOA. 180-60-60= 60 гр. => АВО - р/с . 6. Т.К. АВО - р/с, АВ=АО=ВО. 7. А т.к. АО = ВО= 5.25 , АВ= 5.25 =>Р аво = 5.25+5.25+5.25= 15.75 ⬛
Точку из которой проведены наклонные обозначим К. Опусти из неё на плоскость перпендикуляр КС. Точки пересечения наклонных с плоскостью А и В. Получим отрезки наклонных АК, ВК и их проекции на плоскость АС и ВС. Треуольники АКС и ВКС равны как прямоугольные по острому углу и катету (Ф и КС). Тогда их строны АК и ВК равны. Обозначим их Х. Соединим А и В. Угол АСВ по условию равен В. Углы КАС и КВС равны Ф. АС=ВС=Х*cos Ф. По теореме косинусов АВ квадрат=(Х*cos Ф)квадрат +(Х*cos Ф)квадрат -2*Х*cos Ф*Х*cosФ*cosВ. Это в треугольнике АСВ. В треугольнике АКВ аналогично АВ квадрат=Х квадрат+Хквадрат-2*Х*Х* cos K. Приравниваем полученные выражения и получим cos K=1-(cos Ф)квадрат*(1-cos В). Где К искомый угол АКВ между наклонными.