Медиана разбивает треугольник на два равновеликих треугольника. ВМ - медиана тр-ка АВС, значит площадь Sabm=(1/2)*Sabc. AK - медиана тр-ка АВМ, значит Sabk=Sakm=(1/2)*Sabm=(1/4)*Sabc. Проведем MN параллельно ВС. Треугольники MNK и BPK равны по стороне и двум прилегающим к ней углам (<KBP=<KMN как внутренние накрест лежащие при параллельных MN и ВС и секущей ВМ, <BKP=NKM как вертикальные, а МК=КВ - дано). Из равенства этих треугольников ВР=MN. Но MN - средняя линия треугольника АРС и равна (1/2)*РС. Значит ВР/РС = 1/2. Площади треугольников АВР и АРС, имеющих одинаковую высоту, проведенную из вершины А к стороне ВС (сторонам ВР и РС) относятся как эти стороны. То есть Sabp/Sapc=1/2. Значит Sabp = (1/3)*Sabc. Sbkp = Sabp - Sabk = (1/3)*Sabc - (1/4)*Sabc = (1/12)*Sabc. Тогда Sbkp/Samk = [(1/12)*Sabc]/[(1/4)*Sabc] = 1/3. ответ: Sbkp/Samk = 1/3.
Нет, не могут лежать на одной прямой. Для того, что бы они МОГЛИ лежать на одной прямой, один из этих отрезков должен содержать два других отрезка. То есть сумма двух отрезков должна равняться третьему. Проверим. АС+АВ = 3+5=8 см это больше чем ВС=4 см. Значит ВС не может содержать эти отрезки. АВ+ВС = = 3+4=7 см. Это больше, чем АС. АС не содержит эти отрезки АС+ВС = 5+4=9 см. Это больше чем АВ = 3 см. АВ тоже не может содержать эти 2 отрезка. Значит это точки не лежат на одной прямой, и, судя по обозначениям образуют треугольник АВС.
Проведем MN параллельно ВС. Треугольники MNK и BPK равны по стороне и двум прилегающим к ней углам (<KBP=<KMN как внутренние накрест лежащие при параллельных MN и ВС и секущей ВМ, <BKP=NKM как вертикальные, а МК=КВ - дано). Из равенства этих треугольников ВР=MN. Но MN - средняя линия треугольника АРС и равна (1/2)*РС. Значит ВР/РС = 1/2. Площади треугольников АВР и АРС, имеющих одинаковую высоту, проведенную из вершины А к стороне ВС (сторонам ВР и РС) относятся как эти стороны. То есть Sabp/Sapc=1/2. Значит Sabp = (1/3)*Sabc. Sbkp = Sabp - Sabk = (1/3)*Sabc - (1/4)*Sabc = (1/12)*Sabc. Тогда Sbkp/Samk = [(1/12)*Sabc]/[(1/4)*Sabc] = 1/3.
ответ: Sbkp/Samk = 1/3.