Две хорды окружности АС и BD взаимно перпендикулярны.
а) Найдите отрезок. соединяющий середины хорд АС и BD, если отрезок. соединяющий точку их пересечения с центром окружности равен 3.
б) При условии пункта а) найдите AD, если AD>BC, AC=BD и отрезок, соединяющий середины хорд АВ и CD, равен 5.
————————
а) Обозначим середины хорд АС и ВD точками К и М соответственно. . Угол Т в точке пересечения хорд - прямой (дано).
Радиус, проведенный к середине хорды, перпендикулярен ей ⇒ Углы ОКТ-ТМТ - прямые. ⇒ Четырехугольник ОКТМ - прямоугольник. Расстояние ОТ является его диагональю. Диагонали прямоугольника равны. ⇒ Длина отрезка между центрами хорд равна КМ=ОТ=3.
---------------
б) Хорды АС и ВD равны и взаимно перпендикулярны (дано), они , стягивают равные дуги и при пересечении образуют равнобедренные прямоугольные треугольники. Поэтому хорды АВ и СD, которые соединяют концы АС и ВD, равны.
Четырехугольник АВСD - равнобедренная трапеция, и PQ - её средняя линия.
Из решения пункта а) данной задачи отрезок КМ=3. Он проходит через середины АС и ВD и принадлежит средней линии PQ. Для треугольников АВС и DBC с общим основанием ВС отрезки РК и МQ - средние линии, поэтому равны. РК=MQ=(PQ-KМ):2=(5-3):2=1. АD - основание треугольника АВD, РМ - его средняя линия. По свойству средней линии треугольника АD=2РМ=2•(PK+KM)=2•(1+3)=8 (ед. длины)
Задание 2 Вариант 1 S=5•10=50см2 ответ: А Вариант 2 S=4•8=32см2 ответ:В
Задание 3 Вариант 1 (n-2)•180=(7-2)•180=900 градусов ответ:Г Вариант 2 (n-2)•180=(8-2)•180=1080градусов ответ:В
Задание 4 Вариант 1 4-2=2см. 2•(4+2):2=8см ответ:А Вариант 2 8-4=4см. 4•(8+4):2=24см ответ:Б
Задание 5 Вариант 1 13в квадрате-5 в квадрате Корень из 144= 12 S=12•5:2=30см2 ответ:В Вариант2 S=1/2a•b S=1/2•2•2=2см ответ:А
Задание6 Вариант 1 13-5=8см 10в квадрате=8 в квадрате+х в квадрате 100-64=корень из 36=6 S=0.5•(5+13)•6=54см2 Вариант2 100-36=корень из 64=8 S=0.5•(11+5)•8=64см2 ответ: А
Две хорды окружности АС и BD взаимно перпендикулярны.
а) Найдите отрезок. соединяющий середины хорд АС и BD, если отрезок. соединяющий точку их пересечения с центром окружности равен 3.
б) При условии пункта а) найдите AD, если AD>BC, AC=BD и отрезок, соединяющий середины хорд АВ и CD, равен 5.
————————
а) Обозначим середины хорд АС и ВD точками К и М соответственно. . Угол Т в точке пересечения хорд - прямой (дано).
Радиус, проведенный к середине хорды, перпендикулярен ей ⇒ Углы ОКТ-ТМТ - прямые. ⇒ Четырехугольник ОКТМ - прямоугольник. Расстояние ОТ является его диагональю. Диагонали прямоугольника равны. ⇒ Длина отрезка между центрами хорд равна КМ=ОТ=3.
---------------
б) Хорды АС и ВD равны и взаимно перпендикулярны (дано), они , стягивают равные дуги и при пересечении образуют равнобедренные прямоугольные треугольники. Поэтому хорды АВ и СD, которые соединяют концы АС и ВD, равны.
Четырехугольник АВСD - равнобедренная трапеция, и PQ - её средняя линия.
Из решения пункта а) данной задачи отрезок КМ=3. Он проходит через середины АС и ВD и принадлежит средней линии PQ. Для треугольников АВС и DBC с общим основанием ВС отрезки РК и МQ - средние линии, поэтому равны. РК=MQ=(PQ-KМ):2=(5-3):2=1. АD - основание треугольника АВD, РМ - его средняя линия. По свойству средней линии треугольника АD=2РМ=2•(PK+KM)=2•(1+3)=8 (ед. длины)