Можно воспользоваться признаками равенства треугольников по трём сторонам, а затем по двум сторонам и углу между ними, если вы его уже как аксиомами без доказательства. Нам известны две стороны, а медиана, упирающаяся в одну из них, образует третью сторону, делящую на равные отрезки одну из известных(получается как бы цифра 4, где косая черта - одна сторона, вертикальная - та, в которую уперлась медиана, а горизонтальная черта - сама медиана). У сравниваемых треуг-в Медианы равны, соответственно, поделенные ими равные отрезки равных сторон тоже равны, и ещё две стороны соответственно равны из условия - это признак равенства по трём сторонам, т.е. мы доказали, что эти части треугольников равны. А коли они равны, то и углы при них соответственно равны, а, значит, у нас есть признак равенства по 2м сторонам(косая и верт. черты) и углу между ними(вершина четверки). его и применяем. задача решена)
Соединив данную точку с вершинами треугольника, получим треугольную пирамиду с равными (это вытекает из условия) рёбрами. Но тогда будут равны и их проекции на плоскость треугольника и на плоскость, перпендикулярную плоскости треугольника. Так как вторые проекции лежат на прямых, проходящих через вершину пирамиды и пересекающих плоскость треугольника в одной точке (равноудалённой от вершин треугольника), то эти проекции совпадают). Но по условию через вершину пирамиды и данную точку проходит и данная в условии прямая. А это значит, что она совпадает с проекцией рёбер пирамиды на плоскость, перпендикулярную плоскости треугольника. Но эта проекция, а вместе сней и данная прямая, перпендикулярна плоскости треугольника.
ОС=25