Решение: Радиус окружности описанной вокруг равностороннего треугольника находится по формуле: R=√3/3 - где а-сторона треугольника Высота в таком треугольнике можно найти по формуле: h=√3/a*a - где а -сторона треугольника По этой формуле найдём сторону равностороннего треугольника: а=h : √3/2 или: а=3 : √3/2=3*2/√3=6/√3 (см) Подставим найденное значение стороны треугольника в формулу для нахождения радиуса описанной окружности: R=√3/3 *6/√3=√3*6/3*√3=6/3=2 (см)
1) BC=AB-AC (потому что у них общее начало в точке а,и открезок АВ больше чем АС)ВС=9,2-2,4=6,8(см)и точка С лежит между точками А и В 2) Углы, которые образовываются при пересечении двух прямых - смежные, их сумма равна 180. Обозначив меньший угол за x получим уравнение:4x+x=1805x=180x=36Это меньший угол. А больший равен 36*4=144 3) Если с- биссектриса угла ав, то угол ас=углу св. Но d делит угол ас пополам. Каждая половина равна 20 градусов, значит весь угол ас равен 40. Но ас=св, поэтому имеем, угол bd = 20+40=60 градусов. 4)Если с- биссектриса угла ав, то угол ас=углу св. Но d делит угол ас пополам. Каждая половина равна 20 градусов, значит весь угол ас равен 40. Но ас=св, поэтому имеем, угол bd = 20+40=60 градусов.
Радиус окружности описанной вокруг равностороннего треугольника находится по формуле:
R=√3/3 - где а-сторона треугольника
Высота в таком треугольнике можно найти по формуле:
h=√3/a*a - где а -сторона треугольника
По этой формуле найдём сторону равностороннего треугольника:
а=h : √3/2 или: а=3 : √3/2=3*2/√3=6/√3 (см)
Подставим найденное значение стороны треугольника в формулу для нахождения радиуса описанной окружности:
R=√3/3 *6/√3=√3*6/3*√3=6/3=2 (см)
ответ: Высота данного треугольника равна 2см