800π см³
Объяснение:
Дано:
Цилиндр:
AB=12см
ОК=8см
<О1КО=45°
V=?
ОА=ОВ=R, радиусы.
∆АОВ- равнобедренный треугольник
ОК- высота, медиана и биссектрисса равнобедренного треугольника ∆АОВ
АК=АВ.
АК=АВ/2=12/2=6см
∆ОАК- прямоугольный треугольник
По теореме Пифагора
ОА=√(ОК²+АК²)=√(8²+6²)=√(64+36)=
=√100=10см. Радиус цилиндра.
Sосн=ОА²*π=10²π=100π см².
∆О1ОК- прямоугольный треугольник
<О1ОК=90°
<ОКО1=45°
<ОО1К=45°
∆О1ОК- равнобедренный треугольник, (углы при основании равны)
О1О=ОК=8см высота цилиндра.
V=Sосн*О1О=100π*8=800π см³
Проекция точки на плоскость есть точка пересечения с плоскостью прямой, проходящей через данную точку перпендикулярно к данной плоскости. Перпендикулярные прямые, проведенные к одной и той же плоскости, параллельны. ⇒ Отрезки перпендикулярных прямых от вершин параллелограмма к плоскости взаимно параллельны. В четырехугольнике АА1С1С стороны АА1|║СС1, в четырехугольнике ВВ1ДД1 стороны ВВ1║ДД1. В выпуклых четырехугольниках АА1С1С и ВВ1Д1Д две стороны параллельны, они – трапеции по определению.
Проведем в параллелограмме и его проекции диагонали. Точки их пересечения обозначим О и О1 соответственно. Диагонали параллелограмма точкой пересечения делятся пополам. Следовательно, ОО1 - средняя линия трапеций АА1С1С и ВВ1Д1Д. Тогда ОО1=(АА1+СС1):2= 10:2=5 м. Поэтому ВВ1+ДД1=2•ОО1=10. ⇒ДД1=10-3=7 м.