Осью симметрии равнобедренного прямоугольного треугольника является высота, проведенная к гипотенузе. В данном случае она же - высота конуса и равна радиусу его основания, так как является еще медианой. ( свойство),
Центральный угол АОС равен дуге, на которую опирается, т.е. 90°.
Хорда АС является основанием равнобедренного прямоугольного треугольника АОС с катетами, равными радиусу конуса.
Плоскость АВС и плоскость основания конуса образуют двугранный угол, который измеряется величиной его линейного угла.
Линейным углом двугранного угла называется угол, сторонами которого являются лучи с общим началом на ребре двугранного угла, которые проведены в его гранях перпендикулярно ребру.
Проведем высоту ОМ ( она же медиана) ∆ АОС.
ОМ⊥АС. По т. о 3-х перпендикулярах наклонная ВМ⊥АС.
Угол ВМО - искомый.
Примем радиус и высоту конуса равными а. Высота ВО конуса перпендикулярна основанию, следовательно, перпендикулярна любой прямой, проходящей в плоскости основания через О .
∆ ВОМ - прямоугольный.
В ∆ АОС медиана ОМ равна АМ, т.е. половине АС ( свойство медианы).⇒
∆ АОМ равнобедренный прямоугольный, его острые углы равны 45°
ОМ=ОА•sin45°=a•√2/2.
tg∠ВМО=ВО:МО=(а:(а√2:2)=√2
Если требуется выразить его в градусах, угол ВМО=54°44'
Основанием четырёхугольной пирамиды SABCD является прямоугольник ABCD, где AB = 2√3, BC = 2√6. Основание высоты пирамиды - это центр прямоугольника. Из вершин А и С опущены перпендикуляры АР и CQ к ребру SB. 1. Докажите, что P - середина отрезка BQ 2. Найдите угол между гранями SBA и SBC, если SD = 6
Боковые ребра пирамиды равны (так как вершина проецируется в центр основания). Значит АS=BS=CS=DS=6. Грани - равнобедренные треугольники. а) Рассмотрим равнобедренный треугольник АSВ. В нем высота SH1, опущенная на основание AB по Пифагору равна SH1=√(SA²-AH1²)= √33. Соответственно, площадь грани АSB равна Sasb=(1/2)*AB*SH1=√99. Тогда АМ (высота к боковой стороне BS) равна АP=2Sasb/SB или АP=2√99/6=√99/3. МВ по Пифагору равно PВ=√(АВ²-АP²) или PВ=√(12-99/9)=√(9/9)=1. Точно также в треугольнике ВSC имеем: SH2=√(36-6)=√30. Sbsc=(1/2)*BC*SH2=√6*√30=6√5. CQ=2Sbsc/SC или CQ=2√5. Тогда BQ=√(BC²-CQ²) или BQ=√(24-20)=√4=2. Итак, доказано, что BQ=2*BP, то есть точка P - середина BQ.
б) Двугранные углы измеряются линейным углом, то есть углом, образованным пересечением двугранного угла с плоскостью, перпендикулярной к его ребру. Таким образом, чтобы измерить двугранный угол, можно взять любую точку на его ребре и перпендикулярно ребру провести из неё лучи в каждую из граней. Возьмем на ребре BS точку Р и проведем из нее в гранях ASB и CSB перпендикуляры. Один из них нам уже знаком - это отрезок АP. Второй - отрезок РK, который будет параллелен отрезку СQ и равен его половине (так как PK - средняя линия треугольника BQC, поскольку точка P - середина отрезка BQ - доказано выше). По Пифагору АK=√(АВ²+ВK²) или АK=√(12+6)=3√2. Тогда по теореме косинусов искомый угол АPK равен: Cosα = (b²+c²-a²)/2bc. Или Cosα = (АP²+PK²-AK²)/2*АP*PK. Cosα = (99/9+5-18)/(2*(√99/3)*(√5))=-2/81,97=-0,135. Мскомый угол равен arccos(-0,135) или α≈97,76°.
Обозначим данный треугольник АВК, угол В=90°.
Осью симметрии равнобедренного прямоугольного треугольника является высота, проведенная к гипотенузе. В данном случае она же - высота конуса и равна радиусу его основания, так как является еще медианой. ( свойство),
Центральный угол АОС равен дуге, на которую опирается, т.е. 90°.
Хорда АС является основанием равнобедренного прямоугольного треугольника АОС с катетами, равными радиусу конуса.
Плоскость АВС и плоскость основания конуса образуют двугранный угол, который измеряется величиной его линейного угла.
Линейным углом двугранного угла называется угол, сторонами которого являются лучи с общим началом на ребре двугранного угла, которые проведены в его гранях перпендикулярно ребру.
Проведем высоту ОМ ( она же медиана) ∆ АОС.
ОМ⊥АС. По т. о 3-х перпендикулярах наклонная ВМ⊥АС.
Угол ВМО - искомый.
Примем радиус и высоту конуса равными а. Высота ВО конуса перпендикулярна основанию, следовательно, перпендикулярна любой прямой, проходящей в плоскости основания через О .
∆ ВОМ - прямоугольный.
В ∆ АОС медиана ОМ равна АМ, т.е. половине АС ( свойство медианы).⇒
∆ АОМ равнобедренный прямоугольный, его острые углы равны 45°
ОМ=ОА•sin45°=a•√2/2.
tg∠ВМО=ВО:МО=(а:(а√2:2)=√2
Если требуется выразить его в градусах, угол ВМО=54°44'