Из одной точки пространства исходят три луча, не лежащие в одной плоскости. сколько различных плоскостей можно провести через эти лучи, беря их попарно? ответ объяснить.
1) Основание прямой призмы – прямоугольный треугольник с гипотенузой 15см и катетом 12см. Найдите площадь боковой поверхности, если грань содержащая больший катет – квадрат. Решение. По Пифагору найдем второй катет основания призмы: √(15²-12²)=√(27*3)=9см. Следовательно, больший катет равен 12см и высота призмы равна 12см (так как боковая грань - квадрат 12х12 - дано). Площадь боковой поверхности призмы равна Sб=P*h, где Р - периметр, а h - высота призмы. Sб=36*12=432см².
2) Ребро правильного тетраэдра равно а. Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2, и проходящей параллельно ребру АВ. Решение. Условие для однозначного решения не полное. Во-первых, не понятно условие "Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2". Проходящее - содержащее это ребро или пересекающее его? Раз сечение делит ребро в отношении 1:2, значит плоскость пересекает это ребро и делит его в отношении 1:2, но считая от какой вершины? Во вторых, таких сечений может быть бесконечное множество, так как плоскость, параллельная прямой АВ, может пересекать тетраэдр в любом направлении. Например, параллельно грани АВS (сечение MNP) или проходящее через точку Q на ребре AS (сечение MQDN). Причем линия пересечения грани АSB и плоскости сечения будет параллельна ребру АВ. Вывод: однозначного решения по задаче с таким условием нет.
(1) Откладываем на прямой отрезок равный заданной длине основания AB. (2) Проводим две окружности радиусом равным заданной высоте с центрами в A и B (3) через точки их пересечения проводим линию, которая разделит основание AB на два равных отрезка AD и DB (4) Проводим окружность с центром в точке D и радиусом |AD| (= DB) (5) Через точки пересечения этой окружности с окружностями построенными в пункте 2 проводим касательные к этим двум окружностям из точек A и B (6) В точке пересечения этих касательных - вершина C