1. если в прямоугольном треугольнике один из углов 45 градусов, то другой тоже 45 градусо, а значит треугольник равнобедренный. Пусть его равные катеты равны х. Используя теорему пифагора состивим уравнение х²+х²=36²2х²=36*36х²=18*36х=√18*36х=18√2 тогда площадь равна S=x·x=18√2·18√2=18·18·2=648
Отрезки касательных к окружности, проведенных из одной точки, равны.Рассмотрим рисунок, данный в приложении. Как равные отрезки из одной точки, ВК=ВЕ=5 смАК=АН=4 смЦентр окружности лежит на биссектрисе угла, радиус и касательная - перпендикулярны, ⇒ точка касания окружности и основания треугольника - основание высоты, которая в равнобедренном треугольнике еще и биссектриса и медиана. Следовательно, НС=НА=СЕ=4Периметр треугольника равен сумме отрезков, на которые окружность в точках касания делит его стороны. Р=10+4=14 смНаверное так
P=30 ед
Объяснение:
АВ+DC=AD+BC.
AD=AB+DC-BC=6+9-8=7
P=2(AB+DC)=2(6+9)=2*15=30