Дано: В треугольнике ABC угол B равен 20°, угол C равен 40°. Биссектриса AM равна 2.
Найти разность сторон BC и AB.
На стороне ВС отложим отрезок ВМ, равный АВ.
Треугольник АВМ равнобедренный, углы при основании равны
(180-20)/2 = 80 градусов.
Угол А = 180 - 20 - 40 = 120 градусов.
Отрезки АМ и АЕ равны по равенству углов ЕМА и АЕМ = 80 градусов.
Теперь переходим к треугольнику АЕС.
У него углы при основании равны по 40 градусов.
Значит, ЕС = АЕ, но так как АЕ равно АМ = 2, то и отрезок СМ, равный разности сторон АВ и ВС, равен 2.
ответ: разность сторон равна 2.
Соединяем точки А₁, С₁ и К, так как они попарно лежат в одной грани.
А₁С₁ = 10√2 как диагональ квадрата.
ΔА₁D₁K: по теореме Пифагора
А₁К = √(A₁D₁² + D₁K²) = √(10² + 5²) = √125 = 5√5
ΔA₁D₁K = ΔC₁D₁K по двум катетам (A₁D₁ = C₁D₁ как ребра куба, D₁K - общий), значит А₁К = С₁К = 5√5
Рa₁c₁k = 10√2 + 5√5 + 5√5 = 10√2 + 10√5 = 10(√2 + √5).
КО - медиана и высота равнобедренного треугольника А₁С₁К.
По теореме Пифагора:
КО = √(А₁К² - А₁О²) = √(125 - (5√2)²) = √(125 - 50) = √75 = 5√3
Sa₁c₁k = 1/2 · A₁C₁ ·KO = 1/2 · 10√2 · 5√3 = 25√6