Объяснение:
По свойству отрезков касательных к окружности: отрезки
НД=ХД, СН=МС, ВМ=ВZ, АZ=AX. Если в прямоугольную трапецию вписана окружность, то сумма её оснований равна сумме её боковых сторон, т.е
АД+ВС=АВ+СД. Если в прямоуг. тр. вписана окр., то высота равна боковой стороне АВ=2r =2*2 (r-радиус окружности), значит по свойству касательных ZB=BM=2 , MC=3-BM=3-2=1, если точка касания делит боковую сторону на отрезки СН и НД, то радиус вписанной окружности равен r=√(CH*НД)
отсюда r²=CH*НД
2²=1*НД
НД=4
НД+СН=5,
теперь подставив в формулу АД+ВС=АВ+СД , получим
АД+3=4+5
АД=9-3=6
S=(BC+AД)/2*МХ
S=(3+6)/2*4=18
Подробнее - на -
По свойству отрезков касательных к окружности: отрезки
НД=ХД, СН=МС, ВМ=ВZ, АZ=AX. Если в прямоугольную трапецию вписана окружность, то сумма её оснований равна сумме её боковых сторон, т.е
АД+ВС=АВ+СД. Если в прямоуг. тр. вписана окр., то высота равна боковой стороне АВ=2r =2*2 (r-радиус окружности), значит по свойству касательных ZB=BM=2 , MC=3-BM=3-2=1, если точка касания делит боковую сторону на отрезки СН и НД, то радиус вписанной окружности равен r=√(CH*НД)
отсюда r²=CH*НД
2²=1*НД
НД=4
НД+СН=5,
теперь подставив в формулу АД+ВС=АВ+СД , получим
АД+3=4+5
АД=9-3=6
S=(BC+AД)/2*МХ
S=(3+6)/2*4=18
Подробнее - на -
ответ: 27 кв см
Условие задачи:
Периметр правильного треугольника, вписанного в окружность, равен 27 см. Найдите периметр и площадь правильного четырехугольника, описанного около этой же окружности.
Объяснение:
Найдем для начала, радиус вписанной окружности.
S=p*r, где полупериметр р=27/2= 13,5 см, а радиус r - нужно найти.
У правильного треугольника все стороны равны между собой а углы равны 60° . Так что медиана, КР является и биссектрисой и высотой. Любая сторона равна 27/3 = 9 см, следовательно из треугольника КРН
по определению косинуса
Отсюда КР = КН* cos 30 =
Значит площадь треугольника равна
Значит
Из рисунка очевидно, что сторона квадрата равна диаметру окружности, то есть
Площадь квадрата равна